INTEGER Integration of energy storage in the distribution grid

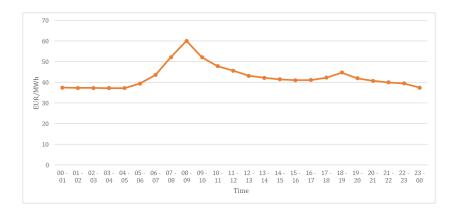
Grid services for energy storage

Fundamental grid needs

- Power quality
- Thermal limits for current
- Frequency control (stability)
- Phase balancing

Applications

- Alternative to grid re-inforcement for large loads (bottlenecks)
- Balancing of renewable production
- Balancing of power fluctuations
- Islanding/microgrid
- Short circuit performance
- UPS/emergency generator/quality of supply


Usage of batteries				
		Neutrality challenges	Additional functions possible?	
Purpose	How	Market impact	Complementarity	
Voltage quality	Reactive power			
	Active power			
Security of supply	Back up, N-1	\bigcirc	\bigcirc	
	Emergency power	\bigcirc		
Peak shaving	Bottlenecks			
	Optimization			None
Market services	Power trading			Some
	Balancing market		\bigcirc	High

Skagerak Energi

³ Source: NVE-report 2-2018: Batterier i distribusjonsnettet. DNV GL and THEMA Consulting Group 🕥 SINTEF

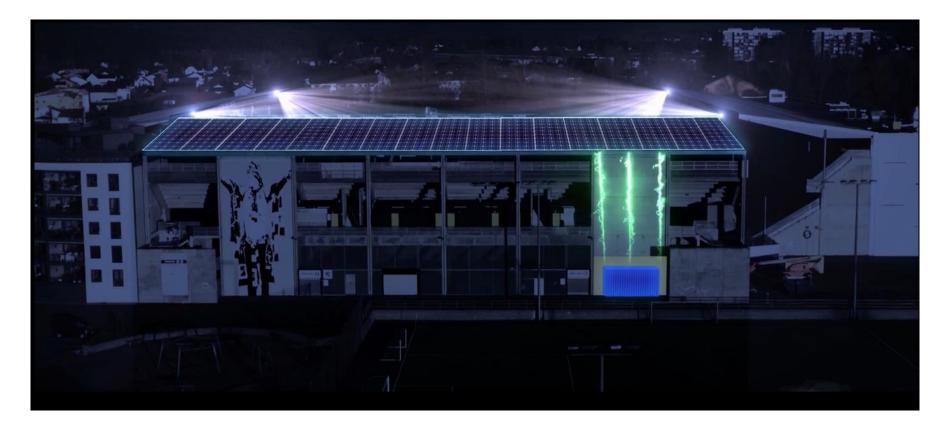
Incentives/barriers for energy storage

- Battery prices
- Supportive arrangements, subsidies
- Economic price signals from electricity marked
- Power tariffs
- Arbitration
- Regulatory obstacles to be removed
- Ownership
- The feed-in cost (has been removed in Norway for those under 100 kW)

Source: NordPool (2018)

Planed energy storage projects in Norway > 500kW

- Stationary Storage
 - Skagerak Energilab, ca. 1 MWh (PV 800 kWp), 2018
 - Powerhouse Brattøra: Trondheim, 2018
 - Yara Birkeland: 7-9 MWh, PILOT-E, 2019
- Offshore Wind
 - Statoil (Hywind Scotland 1 MWh)
 - Dong Energy (Burbo Bank 2 MW)
- 60 el-ferries by 2021. By year 2030, 2/3 of all ferries
- 53 el-buses in Norway by 2019
- The national target that only zero-emision cars will be sold from 2025

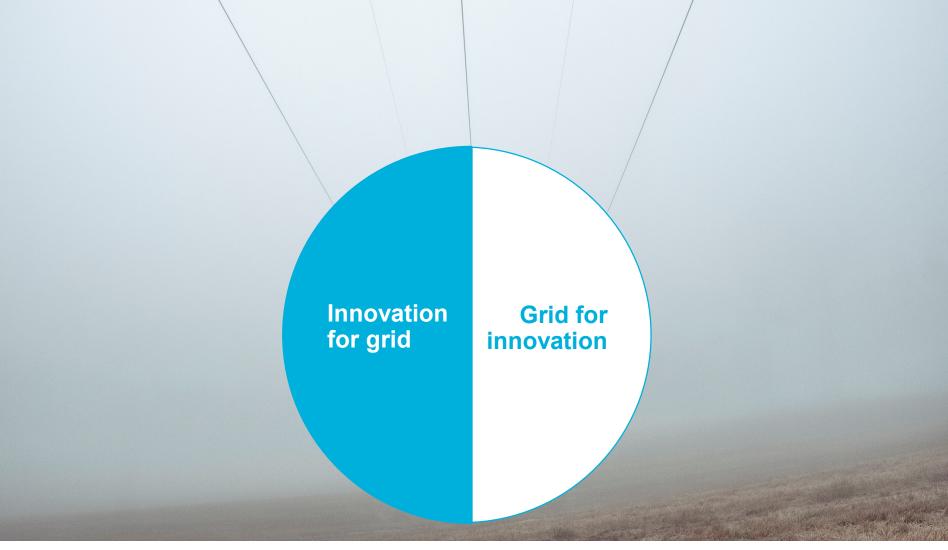

Norways toughest solar power plant and energy storage **SKAGERAK ENERGILAB**

Powered by Skagerak Energi

CONTRACTOR OF

Skagerak Energilab

FC ODD: Norways most environmental friendly football club



Sports gets peoples attentions

Why install three thousand three hundred solar panels and a big battery at a football stadium?

Skagerak Energilab – Numbers

Solar panel

• Size:

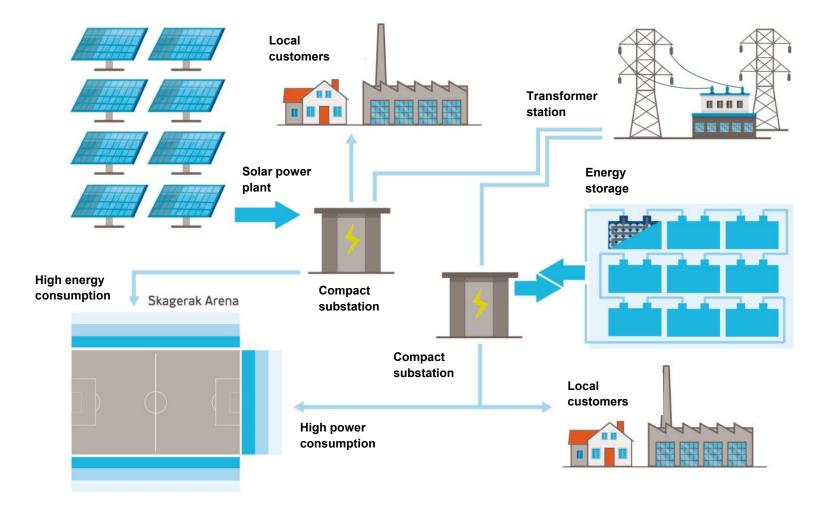
Installed power:

- Estimated production:
- Specific performance:

5330 m2

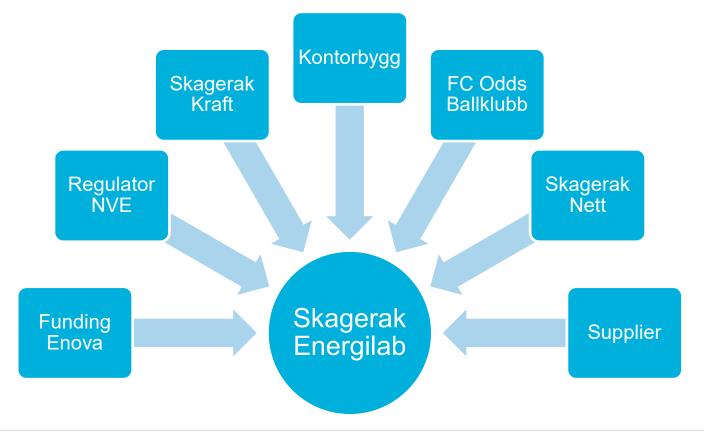
840 kWp

660 MWh


786 kWh/kWp

Energy storage

- Capacity:
- Power:


1 MWh 800 kW

Cooperation

Integer and Skagerak Energilab Key exploitable results, lessons learned and recommendations

Technologies

- a) Local production
- b) Local energy storage
- c) Interaction between distributed energy resources
- Stakeholders
 - 1) From DSO perspective
 - 2) From commercial (power company) perspective
 - 3) From customer perspective
 - 4) Fra regulators perspective
- Lessons learned and recommendations
 - . Feasibility of combining local resources
 - II. Service stacking
 - III. Ownership, regulation and business model
 - IV. Commercial cooperation

Thank you

Henrik Landsverk Skagerak Nett AS Mail: henrik.landsverk@skagerakenergi.no

Idar Petersen Sintef Energi AS Mail: Idar.petersen@sintef.no

www.skagerakenergi.no