Terna’s Grid-Scale Battery Storage Projects

Results from experimentation

Maura Musio – Innovation & Storage, Terna

Nicosia, November 24th 2017
ABOUT Terna

Current Scenario and future challenges

Terna’s experience of energy storage integration in the transmission grid

Lessons learned and future perspectives...
Experimentation On Grid-Scale Battery Storage Projects

Terna is

- the owner of the Italian High Voltage National Transmission Grid
- responsible for the transmission and dispatching of electricity throughout the Country
- in charge of the development and maintenance of the HV Grid, employing a workforce of ~3,700
- Listed on the Stock Exchange since 2004, it is one of the leading industrial companies on the FTSE-MIB index

About Terna – Company Profile

Numbers ...

Grid
~ 72,600 km of high and extra-high voltage power lines (132/150 kV, 220 kV, 380 kV)
21 Interconnections lines with neighbouring countries
852 Substations

Assets
8 Transmission Operating Areas
8 Distribution Centers
3 Remote-Control Centers
1 Foreign Subsidiary

Electricity Market
316,9 TWh of energy consumption (2015)
≈60,491 MW demand peak

... and premises

Nicosia, November 24th 2017
ABOUT Terna

CURRENT SCENARIO AND FUTURE CHALLENGES

Terna’s Experience of Energy Storage Integration in the Transmission Grid

Lessons Learned and Future Perspectives...
Experimentation On Grid-Scale Battery Storage Projects

Causes

- **Economic crisis** and subsequent loss of many big consumers (i.e. national demand decreased 12% from 340 TWh to 300 TWh)
- Aggressive policy of incentives promoting RES + imminence of grid parity
- **No time to fortify** and develop the grid to support new scenarios

Effects

- Fast and massive growth of RES:
 - Rise in congestion-related curtailments (i.e. 2010 ~500 GWh lost)
- Traditional power plants running at minimum load:
 - Loss of inertia in smaller insular systems (i.e. Sicily and Sardinia)
 - Loss of available frequency reserves

Mitigating actions

- Optimize integration of RES and increase flexibility of national grid (i.e. smarter grid)

The Italian Context

Nicosia, November 24th 2017
Key Enablers of the energy transition

<table>
<thead>
<tr>
<th>Component</th>
<th>Enabler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Market</td>
<td>- Mechanism aiming at ensuring system adequacy by means of long term price signals in the energy market structure</td>
</tr>
<tr>
<td>Network Development</td>
<td>- Transmission capacity increase and interconnection with other countries</td>
</tr>
<tr>
<td>Storage</td>
<td>- Utility scale and distributed small-medium scale storage solutions development</td>
</tr>
<tr>
<td>Demand Response</td>
<td>- Enabling demand to participate to the market, providing ancillary services</td>
</tr>
<tr>
<td>Smart Grid</td>
<td>- Investing in FACTS (Flexible AC Transmission System) and real time grid management system</td>
</tr>
<tr>
<td>Market Evolution</td>
<td>- Driving the evolution of Ancillary Services Market to foster the participation of new resources (demand, distributed generation, storage) and new actors (e.g. aggregators)</td>
</tr>
<tr>
<td>Data Management</td>
<td>- Full availability of metering data from any resource/operator and implementation of a management platform</td>
</tr>
</tbody>
</table>

It is required to develop the proper mix of actions among which a further increase of storage capacity
Experimentation On Grid-Scale Battery Storage Projects

ABOUT Terna

CURRENT SCENARIO AND FUTURE CHALLENGES

Terna’s experience of energy storage integration in the transmission grid

Lessons learned and future perspectives...
Experimentation On Grid-Scale Battery Storage Projects

Energy Intensive projects

- **October 2012**: Italian ministry approval
- **February 2013**: Italian energy authority approval
- **April 2013**: Tender started – battery supplier
- **December 2014**: Service started - provisional layout

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Tender started – battery supplier</td>
</tr>
<tr>
<td>2013</td>
<td>First factory test acceptance</td>
</tr>
<tr>
<td>2014</td>
<td>Service started - provisional layout</td>
</tr>
<tr>
<td>2015</td>
<td>Testing startup</td>
</tr>
</tbody>
</table>

Power Intensive projects

- **October 2012**: Italian ministry approval
- **February 2013**: Italian energy authority approval
- **September 2013**: Tender started – first suppliers
- **December 2014**: Testing startup – first storage systems
- **December 2016**: Testing startup – last storage systems (flow technology)
- **2018**: Storage Lab Completion

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Tender started – battery supplier</td>
</tr>
<tr>
<td>2013</td>
<td>First factory test acceptance</td>
</tr>
<tr>
<td>2014</td>
<td>Service started - provisional layout</td>
</tr>
<tr>
<td>2015</td>
<td>Testing startup</td>
</tr>
<tr>
<td>2016</td>
<td>Testing startup – last storage systems (flow technology)</td>
</tr>
<tr>
<td>2017</td>
<td>Storage Lab Completion</td>
</tr>
<tr>
<td>2018</td>
<td>Storage Lab Completion</td>
</tr>
</tbody>
</table>

Nicosia, November 24th 2017
Experimentation On Grid-Scale Battery Storage Projects

Terna’s Energy Storage Pilot Projects

Storage Lab (Power Intensive)
- Main goal: increase of grid security
- Applications: fast FCR, FRR, Special Protection System (*)
- Size (MW): ≈ 16 MW (Phase I)
- Technologies: Li-Ion, Zebra, Flow, other (Supercap...)
- Number of sites: 2

Testing, comparison and evaluation of different storage technologies

Advanced control systems for the management of multi-technological battery plants

System characterization both on “grid scale” size and “lab-module scale” size

Sicilia - Ciminna
- Final planned size (MW): ≈ 7.3 MW
- Status: in testing ≈ 5.55 MW

Sardegna - Codrongianos
- Final planned size (MW): ≈ 8.65 MW
- Status: in testing ≈ 7.9 MW

Power and Energy Intensive projects are characterized by different sizes and goals, having each one peculiar experimenting approach

Large Scale (Energy Intensive)
- Main goal: reduction of wind energy curtailment
- Applications: congestion management, FCR, FRR, TR (*)
- Size (MW): ≈ 35 MW
- Technologies: NaS (Sodium Sulfur)
- Number of sites: 3

Mono-technological battery solution based

Large scale plants, used to reduce wind energy curtailment

Additional supply of ancillary services (FCR, FRR...)

Nicosia, November 24th 2017

(*) FCR: Frequency Containment Reserve
FRR: Frequency Restoration Reserve
TR: Tertiary Reserve
Experimentation on Grid-Scale Battery Storage Projects

Amsterdam, October 4th 2017

Terna's technological portfolio

<table>
<thead>
<tr>
<th>Storage time</th>
<th>Power Intensive</th>
<th>Energy Intensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 – 60 seconds</td>
<td>0,5 – 1 hour</td>
<td>2 – 4 hours</td>
</tr>
<tr>
<td></td>
<td>Power/Energy decoupled</td>
<td>8 hours</td>
</tr>
</tbody>
</table>

- Procurement on going

9,2 MW installed
3,4 MW installed
0,85 MW installed
35 MW installed

Terna's Pilot Projects

"Large Scale" – Energy Intensive
"Storage Lab" – Power Intensive

Main applications

- Ancillary services (e.g. frequency regulation) and grid support
- Defence systems
- Congestion management
- Load Shifting
- Back-up

By means of its Pilot Projects, Terna has covered the full range of possible applications for energy storage systems: from power-intensive to energy-intensive ones

Nicosia, November 24th 2017
The project allows hence the testing and performance assessment of most technologies available on the market.
Experimentation On Grid-Scale Battery Storage Projects

Technology assessment, validation and comparison

Key Factors

- Capex
- C Rate
- Efficiency
- Life Time
- Availability
- O&M Costs

Investment costs:
- Upfront
- Replacement of investments over time

- Ratio between the energy in discharge and the energy in charge referred to a reference cycle (depending on the cycle typology and hence on the specific application)

- Cycles number depending on the maximum tolerable degradation of efficiency, energy capacity and C-Rate, evaluated in operation

- Calendar Life

Cost-benefit analysis of energy storage applications should consider at least six key factors. Comparison within the technology portfolio to provide specific applications has to consider each of them

Nicosia, November 24th 2017
Storage systems have been characterized by high efficiency values close to the nominal ones when used in nominal conditions, that means operations with charging/discharging cycles near to the «standard» cycle. Nevertheless, the efficiency falls dramatically when the cycled energy volumes are lower than standard cycles ones.

Net Efficiency evaluated during continuous operation

- Provision of only primary frequency regulation service (FCR): 15-30%
- Provision of both primary (FCR) and secondary (FRR) frequency regulation services: 65-80%
- **ZEBA** (half-year average values among technologies)
 - FCR: 18%
 - FCR + FRR: 67%
- **LITIO** (half-year average values among technologies)
 - FCR: 23%
 - FCR + FRR: 76%

(*): Battery efficiency evaluated for the «grid scale» system

Round-trip efficiency on the reference cycle (module scale VS grid scale)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Module Scale Efficiency</th>
<th>Grid Scale Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SdA1</td>
<td>83%</td>
<td>95%</td>
</tr>
<tr>
<td>SdA4</td>
<td>83%</td>
<td>96%</td>
</tr>
<tr>
<td>SdA5</td>
<td>88%</td>
<td>97%</td>
</tr>
<tr>
<td>SdA6</td>
<td>81%</td>
<td>96%</td>
</tr>
<tr>
<td>SdA7</td>
<td>81%</td>
<td>96%</td>
</tr>
<tr>
<td>SdA2</td>
<td>88%</td>
<td>90%</td>
</tr>
<tr>
<td>SdA3</td>
<td>79%</td>
<td>90%</td>
</tr>
<tr>
<td>NAS</td>
<td>77%</td>
<td>85%*</td>
</tr>
</tbody>
</table>

Module Scale nominal efficiency evaluated on the reference standard cycle

Grid Scale net nominal efficiency evaluated including power converter systems, auxiliaries, transformer, on the reference cycle
The results of the cycling test indicate that some technologies can tolerate more than 5000 cycles showing a very low performance degradation:

- The Lithium SdA 7 showed a 5% reduction of its nominal capacity after 6000 cycles.

On the contrary, other technologies showed high ageing degrees even from 1000 cycles:

- The Lithium SdA 4 proves to be near to the 80% limit of residual capacity just after 2000 cycles.

The different electrochemical storage technologies, tested on the same cycle, show an ageing degree substantially different from one other.
In general, the frequency regulation cycle causes a higher battery degradation than the standard cycle, even if the former is characterized by a lower total energy exchange.

The effect on the capacity degradation is however strongly dependent on the tested technology.

For each technology, the number of equivalent cycles is strongly dependent on the cycle characteristics (power profile, inversions number, continuous cycling or with stand-by phases, ...)

Battery energy capacity measured after every reference cycle and referred in percentage to the nominal battery capacity.
Experimentation On Grid-Scale Battery Storage Projects

Average availability of the Energy Intensive plants – First half 2016

Average plants availability: 70-91%, characterized by a constant growth in the half-year periods after the start of operations

Most of unavailability is due to failures and malfunctions of the power conversion system, as well as related to adjustments on the innovative control logics and functionalities presently implemented

Considering the experience acquired so far, it can be highlighted that battery modules have the minor impact on the whole unavailability of the storage plants
Experimentation On Grid-Scale Battery Storage Projects

ABOUT TERNA

CURRENT SCENARIO AND FUTURE CHALLENGES

TERNA’S EXPERIENCE OF ENERGY STORAGE INTEGRATION IN THE TRANSMISSION GRID

LESSONS LEARNT AND FUTURE PERSPECTIVES...
Storage technologies tested by Terna have shown efficiency similar to the nominal one when used in nominal conditions. **The real efficiency can be much lower than the nominal one and strongly depends on the application**

So far, it is not possible to highlight any conclusion **about expected lifetime** of these technologies, but it is clear that **important differences exist among similar technologies, depending on the application**

Using a storage plant providing only one application can reduce its potentiality exploitation. It is very important **to design a storage system able to provide multiple services**, considering technical limits of each electrochemical technology

In order to foster the sector, it is very important to ensure a regulatory framework where **an energy storage resource can carry out benefits for more than one player of the electricity chain. Grid codes should be adapted properly** to maximize the capabilities of these resources
Experimentation On Grid-Scale Battery Storage Projects

Pilot Projects for participation of new flexibility resources to the Ancillary Service Market

Next Steps

AEEGSI Resolution 300/2017/R/eel
The Italian Regulator has defined the criteria to allow demand, production units not already enabled to ancillary service market (such as RES and DER) and storage plants to provide flexibility services by means of “pilot projects”. These pilot projects are meant to allow the acquisition of useful elements for the organic reform of the ancillary service market in accordance with the “European Balancing Code”.

Consumption Virtual Units enabled
• Market participation of aggregated loads ensuring a reduction of the consumption of at least 5 MW within 15 min by Terna signal, able to provide the decrease of consumption for at least 3 hours.
• New role of the Balance Service Provider as an independent player.

Production Virtual Units enabled
• Market participation of aggregated non-relevant production units (whether programmable or non-programmable) including storage systems, able to provide flexibility to increase and/or decrease at least 5 MW within 15 min by Terna signal, and keeping the state for at least 3 hours.
• New role of the Balance Service Provider as an independent player.

In accordance with the Italian Regulator, Terna has been promoting new initiatives aiming at enabling a larger number of resources to provide flexibility to the electric system. In 2017 Terna has launched pilot projects about both consumption and production virtual units aggregated.

Nicosia, November 24th 2017
Thank you

www.terna.it