Best practices of the Smart Synergy Project and Hungarian Case Study leading to the SET-UP Project (Hungary)

Róbert BÁN
SET-UP Hungarian project partner
Managing director, Tolna County Development Agency
SET-UP at a glance

« Smart Energy Transition to Upgrade regional Performance »

SET-UP aims at improving energy performance of the partner regions with **enhanced policies on smart grids**, addressing 3 main challenges of:

- **Empowering consumers**
- **Securing funding sources**
- **Developing economic models**

SET-UP in figures

- **1,35 M € ERDF**
- **2016 - 2021**
- **8 partners from 6 EU regions**

Want to know more? Visit our [website](#)!

SetupProject
SET-UP partners

« Smart Energy Transition to Upgrade regional Performance »

- Regen
- Leicester Energy Agency / Leicester City Council
- Bretagne Développement Innovation / Regional Council of Brittany
- AREAL – Regional Energy and Environment Agency of Algarve
- Andalusian Energy Agency / Regional Ministry of Employment, Enterprise and Commerce
- Kaunas Regional Energy Agency
- Tolna County Development Agency
SET-UP interregional learning process
« Smart Energy Transition to Upgrade regional Performance »

1. Analyse common challenges
2. Exchange good practices
3. Define efficient actions

Support from regional authorities and key stakeholders

Improve regional energy policies
Focus on consumer engagement

« Smart Energy Transition to Upgrade regional Performance »

General lack of knowledge and understanding of the smart grid concept

Focus on good practices contributing to consumer engagement and the provision of information tools, support services and opportunities

- Demand response solutions
- Awareness raising initiatives
- New business models (e.g. self-consumption)
- Legislation
What have led to SET-UP? – Hungarian experiences

Smart Synergy project – Measuring the impact of smart meters on consumers

- Testing smart meters at representative group of diverse consumers, selected by statistical methodology
- Implemented by DÉMÁSZ - South-Hungarian Power Supply Plc.
- DÉMÁSZ Zrt. supplies electricity for 775,000 household and business customers all over Hungary and operates a network having a length of 32,320 km in South Eastern Hungary.
- The project has analysed the rollout solutions, obstacles and technological need from the aspect of a Distribution System Operator (DSO)
- Mission:
 - Analyse the attitude of the consumers related to SM
 - Examine the technological possibilities of multi-utility smart metering
 - Define possible business models for SM system
 - Observe the data security&protection aspects
What have led to SET-UP? – Hungarian experiences

Smart Synergy project – Measuring the impact of smart meters on consumers

- **Partners:**
 - ÉGÁZ-DÉGÁZ Földgázelosztó Zrt.
 - Szegedi Vízmű Zrt.
 - EDF DÉMÁSZ Zrt. (universal service provider)
 - EDF DÉMÁSZ Partner Kft. (installing meters)

- **Planned volume of meters**
 - Electricity meter: 3000 (500 PLC, 2500 GPRS)
 - Gas meter: ca. 10-50
 - Water meter: ca. 50-100 as submeter of block of flats
What have led to SET-UP? – Hungarian experiences

Smart Synergy project – Measuring the impact of smart meters on consumers

Budapest
city with county rights
town
village
What have led to SET-UP? – Hungarian experiences

Smart Synergy project – Measuring the impact of smart meters on consumers

Test metering:
Consumer panel equipped with smart meters
- where the changes in consumption due to metering or energy market offers can be registered.

Control meters:
Consumer panel equipped with meters registering data with 15 mins frequency
- similar characteristics as the test panel, therefore comparable as a reference consumption.

12,000

6,000

18,000
What have led to SET-UP? – Hungarian experiences

Smart Synergy project – Measuring the impact of smart meters on consumers

- Experiences:
 - Successful data reading: GSM 97-99%, PLC 96-98 %
 - PLC meters can be installed easily
 - The PLC concentrator should be installed with the same type of meter
 - External GSM antenna is needed for the 4 % of the meters
 - During the installation of the meters only minimal consumer resistance was found
 - It is hard to establish well-operating balance of the meter + adapter + head end + system + SAP
 - It is hard to adjust the gas and water meters
What have led to SET-UP? – Hungarian experiences

Smart Synergy project – Measuring the impact of smart meters on consumers
What have led to SET-UP? – Hungarian experiences

Smart Synergy project – Measuring the impact of smart meters on consumers

- Consumer information on SM

![Chart showing consumer information on SM]
What have led to SET-UP? – Hungarian experiences

Central Smart Metering LTD project – Smart meter rollout in Hungary

• Founded by MAVIR Ltd. as its wholly owned subsidiary in September 2011.
• Financial background for the company was provided by the Hungarian government by transitional allocation of carbon dioxide emission allowances free of charge with the support of the European Union.
• Mission: To harmonize the initiations of smart metering, smart grids, to support establishing synergies and competencies between the different industrial fields,
• **Tasks:**
 • Developing and testing of an infrastructure for data collection contributing to the modernisation of the energy system
 • Contributing to solving system regulation problems (household power plants, E-Mobility) and decreasing the system level energy losses
 • Providing necessary information for the country wide roll-out of smart metering in Hungary, collecting and methodizing experiences, creating recommendations
What have led to SET-UP? – Hungarian experiences

Central Smart Metering LTD project – Smart meter rollout in Hungary

Metering locations, partners in cooperation

- Municipalities of Budapest and rural municipalities managing city administration offices, public institutions: nursery, kindergarten, school, hospital, university
- Small household power plants and electric charging stations
- Infrastructure operators
- Energy Traders
- Market Players
- Citizens – Universal Service
What have led to SET-UP? – Hungarian experiences

Central Smart Metering LTD project – Smart meter rollout in Hungary

Public procurements
- 90% (October 2015 – August 2017)

System Integration
- 80% (August 2016 – September 2017)

Installation of smart meters
- 20% (March 2017 – October 2017)

Data Collection
- 15% (October 2016 –)

Closing Document
- 5% (March 2018)

Progress of the Central Smart Network Pilot Project
- 75%
What have led to SET-UP? – Hungarian experiences

Central Smart Metering LTD project – Smart meter rollout in Hungary

Examples for the technologies applied:

Electricity - G3 PLC

- The following appliances are used as the noise source in the field trial:
 - IH Heater, TV, triac, 3 Kotasu Heaters, Microwave, Rice Cooker, Water Pot, Blanket, and carpet vacuum
- The noise spectrum of two major noise sources IH Heater an Kotasu are as shown below:

![Home Appliances Noise](image)

Natural gas – 169 MHz WMBUS concentrator
SET-UP main activities

Phase 1 (2016 – 2019):
Interregional exchange and definition of an action plan for each territory

![Venn diagram showing Analysis of local energy systems, Exchange of good practices, and Definition of action plans]

Phase 2 (2019 – 2021):
Implementation and monitoring of the action plans
Empowering consumers - SWOT

<table>
<thead>
<tr>
<th>S</th>
<th>W</th>
<th>O</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRENGTHS</td>
<td>WEAKNESSES</td>
<td>OPPORTUNITIES</td>
<td>THREATS</td>
</tr>
<tr>
<td>Electricity Directive is transposed into the HU legislation.</td>
<td>Energy Efficiency Directive is not fully transposed to HU legislation.</td>
<td>Extended consumer empowerment actions targeting households and business units for a better uptake of smart metering.</td>
<td>Smart meters may reveal personal assets/appliances when the occupants are away or present.</td>
</tr>
<tr>
<td>There are already successfully implemented smart grid pilots by DSOs.</td>
<td>Electricity prices are too moderated to provide impetus for demand side actions and decentralised electricity production.</td>
<td>Early detection of meter failures.</td>
<td>Data about personal energy usage can be sold to marketers or packaged with other data to create detailed portraits of the habits, lifestyle, and income level.</td>
</tr>
<tr>
<td>Awareness raising actions target the end users/consumers.</td>
<td>Price of smart meter has to be probably born by the consumer (to be regulated after the pilot project).</td>
<td>Faster service restoration, flexible billing cycles.</td>
<td></td>
</tr>
<tr>
<td>Regional pilot actions have been initiated by the DSOs, and currently a national level pilot is run by the TSO, experiences could be used.</td>
<td>Data privacy solutions are not complexly elaborated.</td>
<td>Providing a variety of time-based rate options to customers.</td>
<td></td>
</tr>
<tr>
<td>The necessary technologies are available for metering and signal transmission.</td>
<td>Data transfer methods have to be carefully fitted to the location of the consumer (GPS for remote, PLC for densely inhabited areas), and some methods have their distortion risks.</td>
<td>Creating customer energy profiles for improved access to the electricity market via accurate consumption history and possibilities to benefit from demand flexibility.</td>
<td></td>
</tr>
<tr>
<td>A dedicated company was set up on national level to coordinate smart metering.</td>
<td>Consumers are not aware of the meaning of smart metering and they are often sceptic about new technologies.</td>
<td>More accurate and timely billing.</td>
<td></td>
</tr>
<tr>
<td>ICT companies are striving to join smart metering projects and integrate their technologies.</td>
<td>Dynamic pricing model and other benefits are not elaborated to provide advantages for the households.</td>
<td>Increased meter reading accuracy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feedback on energy consumption to the consumer and his energy automation systems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved safety of humans and equipment through better power quality and fault management.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction in meter reads and associated management and administrative support (results indirectly lower energy costs for consumers).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved utility asset management (results indirectly lower energy costs for consumers).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Easier energy theft detection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Easier outage management.</td>
<td></td>
</tr>
</tbody>
</table>
SET-UP expected impacts

« Smart Energy Transition to Upgrade regional Performance »

Definition and implementation of action plans

Improved regional policies

New funded projects

New opportunities for local companies

Increased application of smart grids

Better energy management
Thank you.

Any questions?

SetupProject

www.interregeurope.eu/set-up/