

Presentation of recent and ongoing R&I projects in the scope of the ETIP SNET

Presentation of recent and ongoing R&I projects in the scope of the ETIP SNET

INTENSYS4EU Deliverable D3.1: Project monitoring - Part 1

Authors: DOWEL MANAGEMENT & RSE

Quality check: ZABALA, BACHER

Delivery date: August 2018

PLAN. INNOVATE. ENGAGE.

PLAN. INNOVATE. ENGAGE.

EXECUTIVE SUMMARY

INTRODUCTION

The European Technology & Innovation Platform Smart Networks for Energy Transition (ETIP SNET) is guiding Research and Innovation (R&I) to support Europe's energy transition¹. For that purpose, a 10-year R&I roadmap covering 2017-262 was adopted in December 2016. It addresses not only smart electricity grids but also interactions with gas and heating and cooling networks and the integration of all flexibility solutions into energy systems, including energy storage and power conversion technologies.

The 10-year R&I roadmap will be updated by 2020 to define the R&I activities planned for the period 2021-2030. In order to do this, a thorough assessment of recent and ongoing R&I projects contributing to the activities planned within the roadmap is to be done. This is the purpose of the "monitoring activity" carried out by the INTENSYS4EU support team³.

THE MONITORED PROJECTS

The present report contributes to the monitoring activity by analysing and disseminating R&I projects' results lying in the ETIP SNET scope. It has been elaborated following a survey conducted towards 250+ projects, amongst which 121 projects have contributed: 43 of them are co-funded by FP7 or Horizon 2020 and 78 are funded through other instruments, in general at national or regional level4.

The budget range for these projects varies from less than 100 k€ to more than 20 M€.

Projects' coordinators are predominantly Research & Innovation stakeholders (research centres, universities, consultants, etc.). Regulated operators (TSOs and DSOs), energy technology providers, ICT and software providers and energy suppliers are also coordinating R&I projects.

Spain and Germany are within the top-3 countries represented in the coordinating organizations of the 121 projects, both for FP7 & H2020 and for other projects. Number 3 is France for FP7 & H2020 projects and Norway for other projects. Stakeholders from Eastern Europe are rarely coordinating FP7 & H2020 projects, with some exceptions from Slovenia, Greece and Cyprus. The situation is more balanced with regards to other projects.

The types of technologies and services tackled by the projects can be grouped into five main categories which are guite equally addressed:

- Technologies for consumers, especially to enable demand response;
- Grid technologies, including hardware and software solutions to improve network management;
- Storage and power-to-X⁵ technologies, connected at transmission or distribution
- Power generation technologies, including dispatchable and non-dispatchable technologies of all sizes;

¹ More information at https://www.etip-snet.eu/about/etip-snet/.

² Downloadable at https://www.etip-snet.eu/wp-content/uploads/2017/03/Final 10 Year ETIP-SNET RI Roadmap.pdf.

³ The INTENSYS4EU project supports ETIP SNET activities and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731220. More information at https://www.etip-sne ⁴ These projects might also benefit from EU funds, for instance from CEF, LIFE, ERDF or ERA-Net.

⁵ Power-to-Gas, Power-to-Heat, Power-to-Liquid.

Market: electricity market and ancillary services.

The overall benefits brought by the projects can be grouped into six main categories, the first three being those most often declared by the monitored projects:

- Improved network management, corresponding to measures enhancing the transmission and distribution network management, for instance congestion reduction, improvement of grid security and reliability;
- **Decreased carbon emissions,** corresponding to benefits related to decrease of Greenhouse Gas (mainly CO₂) emissions, for instance thanks to the increase of renewable penetration;
- Efficient business models & market designs, corresponding to projects working on innovative business models or market designs, aiming at bringing economic benefits to society;
- **Reduced energy bills**, corresponding to benefits linked to the decrease of energy costs for consumers and/or the reduction of energy consumption;
- Decreased network costs, corresponding to a reduction in CAPEX and/or OPEX of distribution and/or transmission networks;
- **Improved social acceptance**, corresponding to measures so as to foster the acceptance of technologies by the society.

PROJECTS' KEY EXPLOITABLE RESULTS (KER)

Within the monitoring survey, project representatives have been asked to identify up to 5 project's results which are the most promising for exploitation (Key Exploitable Results or KER). In total, 281 different KER have been identified.

Different natures of KER have been defined:

- **Methodology**: methodologies for designing new rules, energy scenarios, etc;
- **Software**: development or demonstration of simulation tools, decision making support tools, etc.:
- **Hardware**: development or demonstration of pieces of hardware;
- Database: quantified scenarios, results of cost-benefit analyses, etc.;
- Policy, Regulation, Market: business models, policy recommendations, etc.

The dominant category of the KER declared by the projects corresponds to software tools (37%), followed by methodologies (23%) and hardware (22%) tools. A significant number of KER are also corresponding to policy, regulation or market recommendations (15%). Only a few correspond to a database (3%).

The majority of KER have a Technology Readiness Level of 7 (system prototype demonstration in operational environment).

In terms of future exploitation of these KER, most of them are expected to be exploited within the next 2 years (42%) or within the next 2 to 5 years (35%). Next steps towards exploitation are in general internal to project consortium (further testing, further demonstration, internal deployment, etc.).

Still, barriers to exploitation have been identified. They are mainly about regulatory and market conditions. Further investment before effective exploitation might also be needed, in general between 100 k€ and 1 M€.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	4
INTRODUCTION	4
THE MONITORED PROJECTS	4
PROJECTS' KEY EXPLOITABLE RESULTS (KER)	5
INTRODUCTION	11
CONTEXT: ETIP SNET MONITORING ACTIVITY	11
METHODOLOGY APPLIED TO ELABORATE THE PRESENT REPORT	11
STRUCTURE OF THE PRESENT REPORT	12
PART 1 – OVERVIEW OF PROJECTS' MAIN FEATURES	13
ORIGIN OF THE PROJECTS' FUNDING AND BUDGET	13
TYPE AND LOCATION OF COORDINATING ENTITIES	14
TECHNOLOGIES AND SERVICES TACKLED	16
BENEFITS BROUGHT BY THE PROJECTS	17
PART 2 – OVERVIEW OF PROJECTS' KEY EXPLOITABLE RES	
DESCRIPTIVE FEATURES OF PROJECTS' KEY EXPLOITABLE RESULTS	18
NUMBER OF KEY EXPLOITABLE RESULTSPER PROJECT	19
PROJECTIVE FEATURES OF KEY EXPLOITABLE RESULTS	21 .TS 22 23
PART 3 – INDIVIDUAL PROJECT SHEETS	26
FP7 & H2020 PROJECTS	
ANYPLACEARROWHEAD	
Chicklish	20

PLAN. INNOVATE. ENGAGE.

		28
	eBADGE	
	ELSA	-
	EMPOWER	
	EU-SysFlex	
	FLEXCOOP	32
	FLEXICIENCY	32
	FLEXITRANSTORE	33
	Flexturbine	34
	FutureFlow	35
	GOFLEX	
	GRIDSOL	
	H2FUTURE	
	iDistributedPV	
		-
	inteGRIDy	
	INTERFLEX	
	INTERPLAN	_
	MIGRATE	
	NAIADES	
	NETFFICIENT	42
	NOBEL GRID	43
	OSMOSE	44
	PLAN4RES	45
	PlanGridEV	46
	PROME3THE2US2	
	RealValue	
	RESERVE	
	SENSIBLE	
	SHAR-Q	-
	SMARTEREMC2	
	SMARTNET	-
	SMILE	52
	SOGNO	52
	STORE&GO	53
	SUCCESS	53
	SUNSED	54
	TILOS	54
		-
	UPGRID.	
	WiseGRID.	
	WISCOND	31
OTHE	R PROJECTS	58
		~~
Α	USTRIA	58
	LEAFS	
	SMART GRID BATTERY STORAGE PROJECT PROTTES	59
	UNDERGROUND SUN.STORAGE	59
C	ROATIA	60
	SIREN	60
	UGRIP	61
	YPRUS	-
	Cyprus RESGRID	
	SMARTPV	-
		-
_	STORES	
C	ZECH REPUBLIC	
	SAVR	
	DENMARK	64
	CITIES	64
	ELECTROGAS	_
	EL Upgraded Biogas	65

Energy Data ServiceIHSMAG	
FINLAND	
EL-TRAN	
HEILA	67
VAGE	67
WIVE	
FRANCE	
Poste Intelligent	
SUBZERO	
GERMANY	
ADELEALEGRO	
AMPACITY	
DC-Blocking Device	
FLEXITES	
Integrated IT-Systems	
KRYOLENS	
KWK Flex	
STENSEA	73
SWARMGRID	74
Variable Shunt Reactor	74
HUNGARY	
SMART SYNERGY	
IRELAND	
DLR	
DS3	
Power Off and Save	
Power Line Guardian / Tower Router	
	1 /
ITAL V	70
ADVANCE DISPATCHING & LEOR	
ADVANCE DISPATCHING & LFOR	78
ADVANCE DISPATCHING & LFORLIVING GRID	
ADVANCE DISPATCHING & LFORLIVING GRIDSTORAGE LAB	
ADVANCE DISPATCHING & LFORLIVING GRID	
ADVANCE DISPATCHING & LFOR	
ADVANCE DISPATCHING & LFOR	
ADVANCE DISPATCHING & LFOR	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO	
ADVANCE DISPATCHING & LFOR LIVING GRID	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO NORWAY CEDREN HydroBalance	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO NORWAY CEDREN HydroBalance CINELDI	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO NORWAY CEDREN HydroBalance CINELDI FASAD	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO NORWAY CEDREN HydroBalance CINELDI FASAD. FLEXNETT	
ADVANCE DISPATCHING & LFOR LIVING GRID	
ADVANCE DISPATCHING & LFOR LIVING GRID	
ADVANCE DISPATCHING & LFOR LIVING GRID	
ADVANCE DISPATCHING & LFOR LIVING GRID. STORAGE LAB. LATVIA. ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION. NETHERLANDS. CO-RISE. DYNAMO. NORWAY CEDREN HydroBalance CINELDI FASAD. FLEXNETT. MODFLEX STRONgrid PORTUGAL Graciosa	
ADVANCE DISPATCHING & LFOR LIVING GRID. STORAGE LAB. LATVIA. ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION. NETHERLANDS CO-RISE. DYNAMO. NORWAY CEDREN HydroBalance CINELDI FASAD. FLEXNETT. MODFLEX. STRONgrid. PORTUGAL Graciosa SINAPSE.	
ADVANCE DISPATCHING & LFOR LIVING GRID. STORAGE LAB. LATVIA. ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION. NETHERLANDS. CO-RISE. DYNAMO. NORWAY CEDREN HydroBalance CINELDI FASAD. FLEXNETT. MODFLEX STRONgrid PORTUGAL Graciosa	
ADVANCE DISPATCHING & LFOR LIVING GRID. STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE. DYNAMO. NORWAY CEDREN HydroBalance CINELDI FASAD. FLEXNETT MODFLEX STRONgrid. PORTUGAL Graciosa SINAPSE SLOVENIA	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO NORWAY CEDREN HydroBalance CINELDI FASAD. FLEXNETT MODFLEX STRONgrid PORTUGAL Graciosa SINAPSE SLOVENIA NEDO project	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO NORWAY CEDREN HydroBalance CINELDI FASAD FLEXNETT MODFLEX STRONgrid PORTUGAL Graciosa SINAPSE SLOVENIA NEDO project SINCRO.GRID	
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA. ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO NORWAY CEDREN HydroBalance CINELDI FASAD FLEXNETT MODFLEX STRONgrid PORTUGAL Graciosa SINAPSE SLOVENIA NEDO project SINCRO.GRID SPAIN ADOSA ALISIOS	78 78 78 78 78 79 80 80 81 81 81 81 82 82 82 82 83 84 84 84 85 85 86 86
ADVANCE DISPATCHING & LFOR LIVING GRID STORAGE LAB LATVIA. ITCITY LITHUANIA DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION NETHERLANDS CO-RISE DYNAMO NORWAY CEDREN HydroBalance CINELDI FASAD FLEXNETT MODFLEX STRONgrid PORTUGAL Graciosa SINAPSE SLOVENIA NEDO project SINCRO.GRID SPAIN ADOSA	78 78 78 78 78 80 80 81 81 81 81 82 82 82 82 82 83 84 84 85 85 86 86 86 87 87

HVDC LINK	91
IDEAS	92
LIFE Factory Microgrid	93
LIFE ZAESS	93
MMC	94
NOISEEK	94
REDACTIVA	95
RENOVAGAS	96
OSIRIS	96
SECUREGRID	97
STORE	97
SWEDEN	98
CLOUDGRID	98
LVM	99
Smart Grid Gotland	99
SWITZERLAND	100
3D DSS	100
Hybrid HVAC / HVDC overhead lines in Switzerland	100
NEXUS	101
JNITED KINGDOM	101
Hybridised LAES	101
SMARTER NETWORK STORAGE	102
WISE-PV	102

INDEX OF IMAGES, TABLES AND FIGURES

FIGURE 1. SHARE OF FP7 & H2020 PROJECTS AND OTHER PROJECTS	13
FIGURE 2. BUDGET RANGES FOR FP7 & H2020 PROJECTS AND OTHER PROJECTS	13
FIGURE 3. TYPE OF PROJECTS' COORDINATING ENTITIES OF FP7 & H2020 PROJECTS	14
FIGURE 4. TYPE OF PROJECTS' COORDINATING ENTITIES OF OTHER PROJECTS	14
FIGURE 5. LOCATION OF COORDINATORS OF FP7 & H2020 PROJECTS	15
FIGURE 6. LOCATION OF COORDINATORS OF OTHER PROJECTS	15
FIGURE 7. TECHNOLOGIES AND SERVICES TACKLED BY FP7 & H2020 PROJECTS	16
FIGURE 8. TECHNOLOGIES AND SERVICES TACKLED BY OTHER PROJECTS	16
FIGURE 9. BENEFITS BROUGHT BY THE PROJECTS	17
FIGURE 10. NUMBER OF KER BY PROJECT	
FIGURE 11. NATURE OF KER	
FIGURE 12. TRL LEVEL OF KER	20
FIGURE 13. EXPECTED EFFECTIVE USE OF KER	21
FIGURE 14. NEXT STEPS TOWARDS THE EFFECTIVE EXPLOITATION OF KER	22
FIGURE 15. TIME TO EXPLOITATION OF KER	
FIGURE 16. BARRIERS TO EXPLOITATION	24
FIGURE 17. INVESTMENT NEEDED BEFORE EXPLOITATION OF KER	25

INTRODUCTION

CONTEXT: ETIP SNET MONITORING ACTIVITY

The European Technology & Innovation Platform Smart Networks for Energy Transition (ETIP SNET) is guiding Research and Innovation (R&I) to support Europe's energy transition⁶. For that purpose, a 10-year R&I roadmap covering 2017-26⁷ was adopted in December 2016. It addresses not only smart electricity grids but also interactions with gas and heat networks and the integration of all flexibility solutions into energy systems, including energy storage and power conversion technologies.

The 10-year R&I roadmap will be updated by 2020 to define the R&I activities planned for the period 2021-2030. In order to do this, a thorough assessment of recent and ongoing R&I projects contributing to the activities planned within the roadmap, is to be done. This is the purpose of the "monitoring activity" carried out by the INTENSYS4EU support team⁸.

The objective of the monitoring activity is two-fold:

- 1. To analyse and to disseminate results from R&I projects being in the scope of the ETIP SNET towards the energy community;
- 2. To measure the coverage degree of each R&I item of the roadmap and decide which R&I activities deserve to be maintained in the next roadmap, and which are sufficiently well covered by results of recent and ongoing projects and could consequently be removed ("gap analysis").

The present report contributes to the first sub-objective of the monitoring activity by analysing and disseminating R&I projects' results lying in the ETIP SNET scope. An upcoming report, to be published during fall 2018, will address the second sub-objective.

METHODOLOGY APPLIED TO ELABORATE THE PRESENT REPORT

Creation of ETIP SNET project database

First, a list of R&I projects in line with the ETIP SNET activities has been created. These R&I projects are either co-funded by the EU Research and Innovation programmes, i.e. FP7⁹ or Horizon 2020 (H2020)¹⁰, or are nationally or regionally funded¹¹. Sources of information have been:

- The BRIDGE initiative gathering Horizon 2020 projects in the field of Smart Grids and Energy Storage¹²;
- Other projects provided by INTENSYS4EU partners (ENTSO-E, EDSO for Smart Grids, EASE and EERA) and by ETIP SNET members. These projects can be EUfunded or not.¹³

In total, the ETIP SNET project database gathers 250+ projects.

⁶ More information at https://www.etip-snet.eu/about/etip-snet/.

Downloadable at https://www.etip-snet.eu/wp-content/uploads/2017/03/Final 10 Year ETIP-SNET RI Roadmap.pdf.

⁸ The INTENSYS4EU project supports ETIP SNET activities and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731220. More information at https://www.etip-snet.eu/intensys4eu/.

⁹ European Union's Research and Innovation funding programme for 2007-2013: see https://ec.europa.eu/research/fp7/index_en.cfm.

¹⁰ European Union's Research and Innovation funding programme for 2014-2020: see https://ec.europa.eu/programmes/horizon2020/

¹¹ These projects might also benefit from EU funds, for instance from CEF, LIFE, ERDF or ERA-Net.

¹² More information at https://www.h2020-bridge.eu/.

¹³ Selected non-EU funded projects are also presented at the ETIP SNET regional workshops organised every year. More information at https://www.etip-snet.eu/regional-workshops/.

Gathering of projects' data

A survey has been conducted amongst the 250+ projects in the ETIP SNET database through an online questionnaire.

This questionnaire was structured as follows:

- General information about projects;
- Specific information of projects' Key Exploitable Results (KER);
- Relation between each project's KER and the ETIP SNET R&I roadmap 2017-26: this
 aspect is not addressed with the present report, it will be detailed in an upcoming report
 to be published in fall 2018.

A total of 121 projects have participated in the survey and are therefore described in the present report. It is assumed that these projects are a representative sample of the whole database. However, some bias might occur.

STRUCTURE OF THE PRESENT REPORT

The present report is structured as follows:

First, analytics about general project features are presented in order to draw a general picture of the 121 projects that participated in the survey:

- Nature of funding: FP7&H2020 or other;
- Type and location of coordinating entities;
- Technologies and services tackled by the projects;
- · Societal benefits brought by the projects.

Then, analytics about projects' Key Exploitable Results (KER) are presented, with a focus on their descriptive and projective features:

- Descriptive features: number and nature of KER, Technology Readiness Level;
- Projective features: expected effective use of KER, time to exploitation, next steps, barriers and investment needed before exploitation.

Finally, individual fiches are made for each project, presenting:

- Synthetic information about the project;
- A focus on their KER emphasizing 3 features:

KER	Name of the KER
14	Solution(s) brought by the KER
	Benefit(s) of the KER
	Final beneficiary(-ies) of the KER

Important disclaimer: The analytics and fiches have been built based on the survey inputs from the different projects as well as on the information provided by official sources (project websites, CORDIS database¹⁵). For the purpose of this report, only synthetic information has been reported.

¹⁴ Icons made by Freepik, Pause08 and Vectors Market from www.flaticon.com

¹⁵ The CORDIS online database is the primary information source for EU-funded projects: https://cordis.europa.eu/

PART 1 – OVERVIEW OF PROJECTS' MAIN FEATURES

ORIGIN OF THE PROJECTS' FUNDING AND BUDGET

Amongst the 121 projects that have participated in the survey, 40 are co-funded by FP7 or Horizon 2020 and 78 are funded through other funding instruments as illustrated on Figure 1.

Figure 2 shows the different budget ranges both for FP7 & H2020 and other projects.

FP7 & H2020 projects belong to two main budget categories: 1 to 5 M€, and higher than 10 M€, only a few projects having a budget between 5 and 10 M€. This should correspond to Research and Innovation Actions (RIA) on one hand, and Innovation Actions (IA) on the other hand.¹⁶

Other projects have a more dispersed budget. One third of the projects have a budget below 1 M€. 40% have a budget between 1 and 5 M€. The rest has a budget above 5 M€.

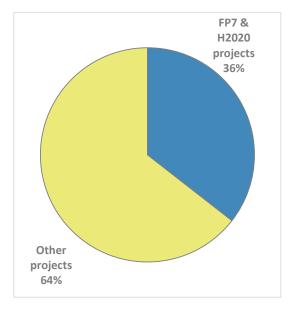


Figure 1. Share of FP7 & H2020 projects and other projects

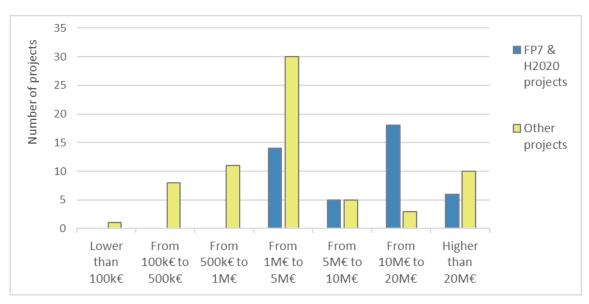


Figure 2. Budget ranges for FP7 & H2020 projects and other projects

¹⁶ See http://ec.europa.eu/research/participants/docs/h2020-funding-guide/grants/applying-for-funding/find-a-call/what-you-need-to-know_en.htm.

TYPE AND LOCATION OF COORDINATING ENTITIES

The following categorization for the projects' coordinating entities has been adopted:

- Regulated operators are TSOs and DSOs as defined by the Electricity and Gas Directives;
- **Energy technology providers** gather manufacturers for energy transmission, distribution, generation, conversion and storage;
- ICT and software providers include software and telecommunication vendors;
- **Energy suppliers** include energy retailers, energy generators, energy service companies (ESCOs) or aggregators acting in energy markets;
- Research & Innovation stakeholders include research centres, universities, thinktanks, consultants and other stakeholders providing R&I-based services.

Figure 3 and Figure 4 display coordinating organizations within the monitored projects, for FP7 & H2020 projects and other projects.

In both cases, Research and Innovation stakeholders are the main category of coordinating entities. ICT and software providers are coordinating mainly FP7 & H2020 projects having participated in the survey, while they are coordinating only a small share of other types of projects. On the contrary, regulated operators are coordinating a large share of non FP7/H2020 projects.

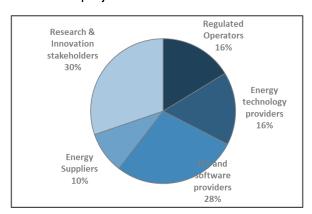


Figure 3. Type of projects' coordinating entities of FP7 & H2020 projects

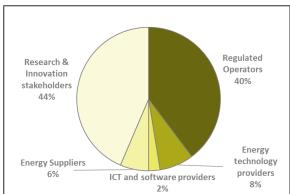
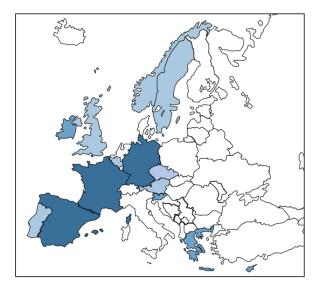



Figure 4. Type of projects' coordinating entities of other projects

The allocation of coordinating organization by countries is illustrated by Figure 5 (FP7 & H2020 projects) and Figure 6 (other projects).

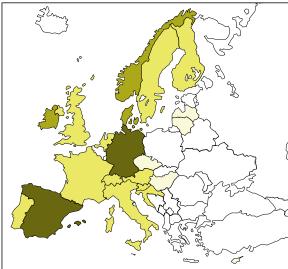


Figure 5. Location of coordinators of FP7 & H2020 projects

Figure 6. Location of coordinators of other projects

Spain and Germany are within the top-3 countries represented in the coordinating organizations of the 121 projects monitored, both for FP7 & H2020 and for other projects. Number 3 is France for FP7 & H2020 projects and Norway for other projects.

Stakeholders from Eastern Europe are rarely coordinating FP7 & H2020 projects, with some exceptions from Slovenia, Greece and Cyprus. The situation is more balanced with regards to other projects.

TECHNOLOGIES AND SERVICES TACKLED

A broad range of technologies and services are being tested by the projects. Five main categories are considered in the present report:

- Technologies for consumers, especially to enable demand response;
- **Grid technologies**, including hardware and software solutions to improve network management;
- Storage and power-to-X¹⁷ technologies, connected at transmission or distribution level:
- **Power generation technologies**, including dispatchable and non-dispatchable technologies of all sizes;
- Market: electricity market and ancillary services.

Figure 7 and Figure 8 show that the monitored projects are tackling all types of technologies and services in a quite balanced manner. Non-significant differences can be observed between FP7 & H2020 projects and other projects.

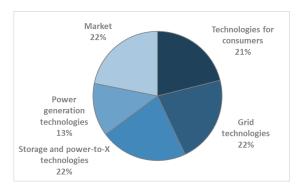


Figure 7. Technologies and services tackled by FP7 & H2020 projects

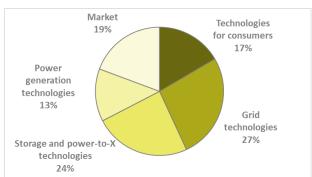


Figure 8. Technologies and services tackled by other projects

PLAN, INNOVATE, ENGAGE,

¹⁷ Power-to-Gas, Power-to-Heat, Power-to-Liquid.

BENEFITS BROUGHT BY THE PROJECTS

The following benefits brought by the monitored projects have been identified by the INTENSYS4EU support team:

- Efficient business models & market designs, corresponding to projects working on innovative business models or market designs, aiming at bringing economic benefits to society;
- Decreased network costs, corresponding to a reduction in CAPEX and/or OPEX of distribution and/or transmission networks;
- **Improved network management**, corresponding to measures enhancing the transmission and distribution network management, for instance congestion reduction, improvement of grid security and reliability;
- **Decreased carbon emissions,** corresponding to benefits related to decrease of Greenhouse Gas (mainly CO₂) emissions, for instance thanks to the increase of renewable penetration;
- **Reduced energy bills** corresponding to benefits linked to the decrease of energy costs for consumers and/or the reduction of energy consumption;
- **Improved social acceptance**, corresponding to measures so as to foster the acceptance of technologies by the society.

The allocation of projects' benefits is illustrated by Figure 9¹⁸. It shows that the top-3 benefits brought by the projects are an improved network management, decreased carbon emissions and efficient business models and market designs.

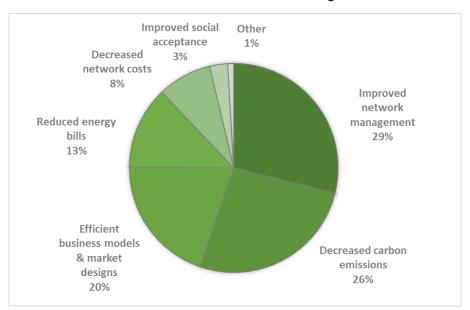


Figure 9. Benefits brought by the projects

PLAN. INNOVATE. ENGAGE.

¹⁸ This analysis is the result of an assessment performed by INTENSYS4EU team based on the information provided by each project.

PART 2 – OVERVIEW OF PROJECTS' KEY EXPLOITABLE RESULTS (KER)

Within the monitoring survey, project representatives have been asked to identify up to 5 project's results which are the most promising for exploitation (Key Exploitable Results or KER). A total of 281 KER's have been identified by project coordinators.

In this part, some descriptive features of projects' KER are presented as well as projective features i.e. further steps and barriers foreseen before the effective KER exploitation.

DESCRIPTIVE FEATURES OF PROJECTS' KEY EXPLOITABLE RESULTS

Number of Key Exploitable Resultsper project

As illustrated by Figure 10, the 121 projects having participated in the survey, have declared the following number of KER:

- 60 projects have declared to have one KER (50% of the total number of projects);
- 15 projects have declared to have 2 KER;
- 14 projects have declared to have 3 KER;
- 11 projects have declared to have 4 KER;
- And 21 projects have declared to have 5 KER¹⁹.

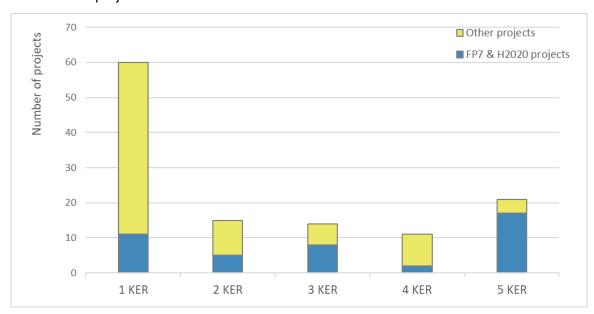


Figure 10. Number of KER by project

The projects declaring 5 KER are mainly FP7 & H2020 projects (80%) when the ones with only one KER are mainly other projects (82%).²⁰

A total of **281 different KER** are taken into account in this report, which is considered to be a sufficient sample to develop different tendencies and analyses based on the projects' inputs.

¹⁹ Within the survey, projects were asked to declare up to 5 KER maximum.

²⁰ "Other projects" are in general nationally or regionally funded. These projects might also benefit from EU funds, for instance from CEF, LIFE, ERDF or ERA-Net.

Nature of Key Exploitable Results

Different natures of results have been defined:

- **Methodology**: methodologies for designing new rules, energy scenarios, etc;
- **Software**: development or demonstration of simulation tools, decision making support tools, etc.;
- Hardware: development or demonstration of pieces of hardware;
- Database: quantified scenarios, results of cost-benefit analyses, etc.;
- Policy, Regulation, Market: business models, policy recommendations, etc.

As shown by Figure 11, the dominant category of the KER declared by the projects corresponds to software tools, followed by methodologies and hardware tools. A significant number of KER are also corresponding to policy, regulation or market recommendations. Only a few correspond to a database.

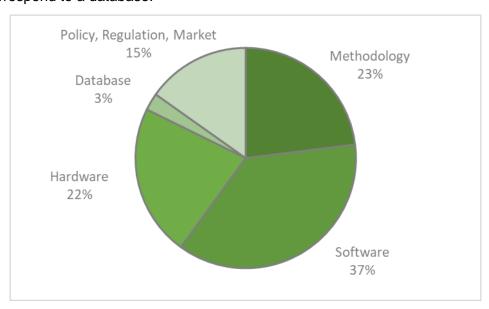


Figure 11. Nature of KER

Output Technology Readiness Level (TRL) of Key Exploitable Results

KER have also been analysed depending on their output TRL:

- TRL 1: basic principles observed;
- TRL 2: technology concept formulated;
- TRL 3: experimental proof of concept;
- TRL 4: technology validated in lab;
- TRL 5: technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies);
- TRL 6: technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies);
- TRL 7: system prototype demonstration in operational environment;
- TRL 8: system complete and qualified;
- TRL 9: actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies).

Figure 12 shows the distribution of KER by their TRL level.

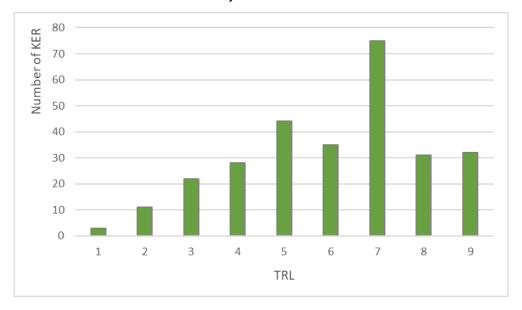


Figure 12. TRL level of KER

The largest number of KER considered in the study have an output TRL 7 (75 KER). Then, around 45 KER have an output TRL 5. The same order of magnitude of KER (around 30 each) are identified with output TRL 4, 6, 8 and 9. Finally, around 40 KER remain with an output TRL 3 or below.

Cross-checking the nature of KER (from previous section) with the output TRL shows that software and hardware tools are the majority within high TRL ranges compared to other types of KER (especially methodologies and policy, regulation or market recommendations).

PROJECTIVE FEATURES OF KEY EXPLOITABLE RESULTS

Expected effective use of Key Exploitable Results

Different (non-exclusive) categories have been defined related to the expected effective use of KER:

- Internal use i.e. by one project consortium partners;
- Collective use i.e. jointly by several project consortium partners;
- Open use (e.g. open source, open data, open access, public domain);
- Commercial use;
- Integration within an educational program.

Figure 13 shows the allocation of the expected effective use for the KER studied.

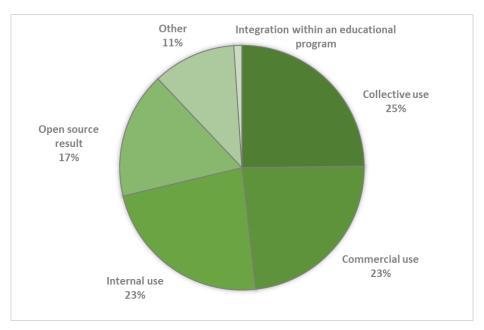


Figure 13. Expected effective use of KER

Next project steps for the exploitation of Key Exploitable Results

Additional next steps necessary towards effective use of results have been provided by the projects. They are gathered within 3 main categories:

- **Next steps internal to project consortium**: such as further testing, further demonstration, internal deployment, etc.;
- Next steps involving external stakeholders: such as external certification, external dissemination, etc.;
- Next steps involving changes in existing framework: such as regulation, market, etc.

As shown by Figure 14, two thirds of the KER considered have next steps internal to project consortium. Focusing on KER with output TRL 9, it appears that this figure drops at 43%.

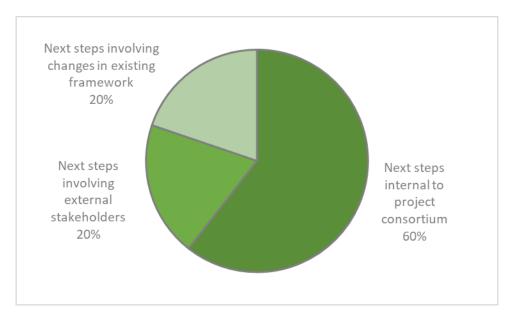


Figure 14. Next steps towards the effective exploitation of KER

Time to exploitation of Key Exploitable Results

"Time to exploitation" includes "time-to-market" for commercial products, and "time to operational use" for non-commercial results (for instance innovations developed within regulated frameworks).

Different timelines have been defined so as to evaluate the time to exploitation for the different KER:

- The KER is already exploited;
- KER exploitation is going to start immediatly;
- KER exploitation will start within less than 2 years;
- KER exploitation will start within less than 5 years;
- KER exploitation will start within less than 10 years;
- KER exploitation will start within more than 10 years;
- time to exploitation is uncertain, it depends on non-controllable conditions.

As shown by Figure 15, most KER are expected to be exploited in less than 2 years (117 KER) or in less that 5 years (99 KER).

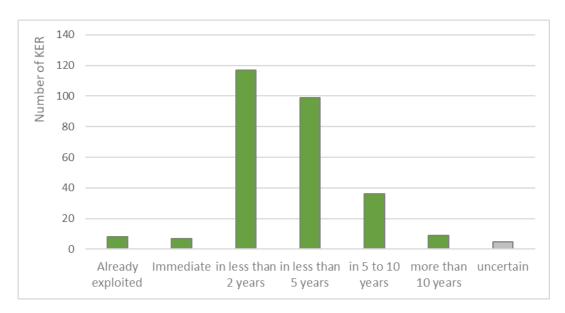


Figure 15. Time to exploitation of KER

Focusing on KER with output TRL 9, it appears that 20% of these will need more than 2 years to be effectively exploited: they mainly correspond to hardware.

Barriers to exploitation of Key Exploitable Results

Projects have been questioned about barriers to KER exploitation. Different barriers have been considered for the analysis:

- Inadequate regulations;
- Inadequate market conditions;
- Difficulties in scaling-up;
- Further investments needed.

Figure 16 illustrates the main barriers identified to KER exploitation.

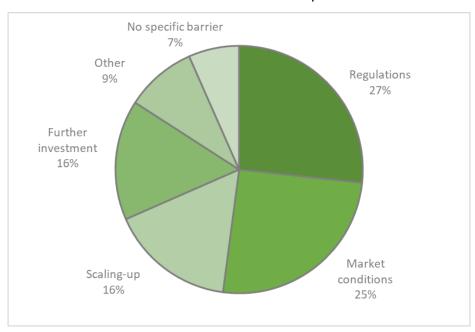


Figure 16. Barriers to exploitation

One quarter of the barriers indicated by the projects are related to **regulatory environment** and another quarter of the barriers are related to **market conditions**. Then, equally displayed, **scaling up** and **further investments** barriers are indicated. The "other" field corresponds for instance to barriers related to:

- Flexibility in power generation not being valued enough;
- Very complex technical processes or specific technologies.

For 7% of KER, no specific barriers have been identified for the exploitation of results.

Focusing on output TRL 9, the main barriers are related to regulations and market conditions.

Investment needed before exploitation of Key Exploitable Results

Regarding the additional investment that might be needed before effective exploitation of KER, projects have been asked to provide the range of such investment, as illustrated by Figure 17.

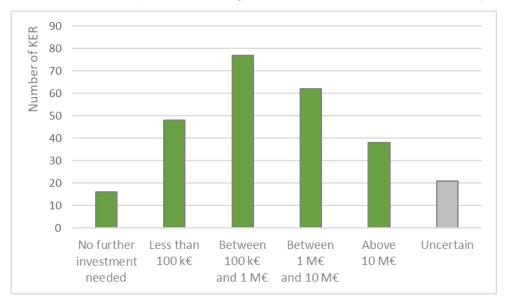


Figure 17. Investment needed before exploitation of KER

Most KER need a significant investment before achieving exploitation.

Even KER with output TRL 9 need significant additional investment before effective exploitation. More than one third of KER with TRL 9 even need an additional investment of 1 M€ or more. This is consistent with the previous observation about hardware and software tools being the majority within TRL 9 KER: investment in hardware and software development is in general higher than in methodologies or policy research.

PART 3 - INDIVIDUAL PROJECT SHEETS

In this part, individual sheets are presented for each of the 121 projects having participated in the survey.

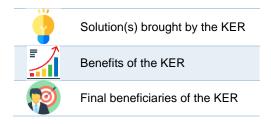
First, FP7 and H2020 projects are presented in alphabetical order; these projects sheets have a blue headline as follows:

FP7 & H2020 PROJECTS

Then, other projects are ordered according to the country of the coordinating organisation, and are presented with the following yellow banner:

OTHER PROJECTS

Within each project sheet, the following information is presented:


- Project acronym, long name (if relevant) and logo (if existing),
- A box explaining the project's main objective,
- A table presenting:
 - The project's start and end years;
 - The project's total costs;
 - The project website;
 - The country of the coordinating organisation;
 - The name of the coordinating organisation;
- Another table presenting:
 - The type of technologies and/or services tackled by the project:

Power generation technologies, including dispatchable and non-dispatchable technologies of all sizes;

Market: electricity market and ancillary services.

- The number of partners and number of countries involved;
- A last table presenting for projects' Key Exploitable Results (KER):

PLAN. INNOVATE. ENGAGE.

Partners

FP7 & H2020 PROJECTS

ANYPLACE

Adaptable Platform for Active Services Exchange

Types of technologies and services tackled

AnyPLACE

Countries involved

Development of a modular energy management system capable of monitoring and controlling local devices according to the preferences of end-users

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2017	3 M€	http://www.anyplace2020.org/	Portugal	INESC TEC

		GRID STORAGE & POWER GENERATION MARKET 8			4
KER	AnyPLACE Energy Management Platform	Smart Meter (SM) Integration	Smart Electric Water Heating Solution	Energy Optimization Software	Community participation in energy management
Ÿ	Automated energy management solution	Capability of creating SMs compatible with Home Energy Management System (HEMS)	Creation and commercialization of smart thermal appliances	Energy modelling and optimized management for households and buildings	Community participation in energy management
	Better energy management in a household	Development of lines of SMs compatible with HEMS	New smart devices compliant with stricter energy efficiency context	Minimisation of the electricity bill and/or maximisation of integration of local generation (e.g. PV)	Increase of energy efficiency in small communities
	User, customer	User, customer, retailer and DSO	User, customer, retailer	User, customer, retailer	User, customer

ARROWHEAD

Efficiency and flexibility at the global scale by means of collaborative automation for five applications: production (manufacturing, process, energy), smart buildings and infrastructures, electro-mobility and virtual market of energy

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	65 M€	http://www.arrowhead.eu	Sweden	LULEA TEKNISKA UNIVERSITET

Types of technologies and services tackled Partners Countries involved

CONSUMERS

>70

15

KER

Arrowhead Framework: for engineering and implementation of digitalisation and automation solutions based on standard architectures

Reduced engineering efforts for the design and implementation of the digitalisation and automation solution.

Improvements and guarantees regarding: Real time data handling, Data and system security, Automation system engineering, Scalability of automation systems. Reduction of 75 % or more, in the design and engineering efforts for the predicted multi-billion networked devices.

Value chain of players in the digitalisation and automation business.

CRYOHUB

Developing Cryogenic Energy Storage at Refrigerated Warehouses as an Interactive Hub to Integrate Renewable Energy in Industrial Food Refrigeration and to Enhance Power Grid Sustainability

Investigation and extension of the potential of large-scale Cryogenic Energy Storage (CES) and application of the stored energy for both cooling and energy generation

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	8.3 M€	http://www.cryohub.eu/	UK	London south bank university lbg

Types of technologies and services tackled **Countries involved Partners** STORAGE & POWER-TO-X 5 14 CryoHub demonstrator of the LAES system at a **KER** refrigerated warehouse/food production facility Integration of Renewable Energy Sources into grid Greater use of RES Grid operators, Equipment suppliers

DREAM

Distributed Renewable resources Exploitation in electric grids through Advanced heterarchical Management

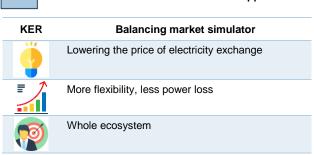
Two aspects considered within the project: a stable and cost-effective integration of distributed renewable energy sources in existing networks, and more involvement of end-users eager to rationalise their energy use from an economic and ecological point of view

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2016	5.8 M€	https://cordis.europa.eu/pr oject/rcn/109909_en.html	France	Institut Polytechnique de Grenoble

	0.0 0	oject/rcn/109909_en.html		de Grenoble
Types of to	echnologies an	d services tackled	Partners	Countries involved

MARKET 7 15

KER	Distributed Market Driven Environments	New Distributed Balancing Markets	Novel Grid contingency management system
•	Hardware and software modules for: Energy Market Analysis, Key Drivers for intelligent use of Energy, Economic and Business Modelling, Simulation Model for What If Analysis user and producer behaviour	Development of behavioural profiling methods, Integration of grid entities and design of possible aggregated operational configuration mechanisms	Analysis, Methods, Models, Algorithms, Environment requirements and specifications for Grid contingency management.
	Industrial and business application development	Industrial and business application development	Practical investigations in field tests Contribution to political discussions about future adaptations of grid codes


EBADGE

Development of Novel ICT tools for integrated Balancing Market Enabling Aggregated Demand Response and Distributed Generation Capacity

Optimal pan-European Intelligent Balancing mechanism, piloted on the borders of Austria, Italy and Slovenia, able to integrate Virtual Power Plant Systems that can assist in the management of the power Transmission & Distribution grids in an optimized, controlled and secure manner

Years	Years Project total Website		Coordinator's country	Coordinator
2012-2015 4.9 M€ http://www.ebadge-fp7.6		http://www.ebadge-fp7.eu/	Slovenia	TELEKOM SLOVENIJE
Types of	technologies and	d services tackled	Partners	Countries involved

ELSA

Energy Local Storage Advanced system

Types of technologies and services tackled

Countries involved

Adaption and integration of close-to-mature storage technologies and related ICT-based EMS for management and control of local loads, generation and (single or aggregated) real or virtual storage resources in buildings, districts and distribution grids

Years	Years Project total cost		Coordinator's country	Coordinator
2015-2018	13.1 M€	http://www.elsa-h2020.eu	France	Bouygues Energies & Services

Partners

CONSUMERS	STORAGE & POWER GENERATION MARKET	10 5
KER	Industrial Storage using second-life EV batteries	Recommendation for regulation changes
Ÿ	Delay the recycling of EV batteries providing a second use	Change in regulation will allow a wider use of storage
<u> </u>	Low cost storage compared to new batteries. Stabilizing the grid locally. Increasing RES penetration and self consumption	Services profitable for the customers and for the grid.
P	User and grid (DSO)	EV Owner, user and grid (DSO)

EMPOWER

Local Electricity Retail Markets for Prosumer Smart Grid Power Services

Types of technologies and services tackled

Countries involved

Facilitation of micro-generation and active participation of prosumers to exploit the flexibility created for the benefit of all connected to the local grid

Years	Years Project total cost Website		Coordinator's country Coordinator	
2015-2017	6.1 M€	http://empowerh2020.eu/	Norway	Schneider Electric Norge AS

Partners

	consumers GRID	STORAGE & POWER GENERATION MARKET	14		5
KER	EMPOWER platform	Customized version of the EMPOWER platform	EMPOWER multi- agent system (MAS)	IoT for smart grids	Forecasting system
	Provides an ICT platform for local electricity trading between neighbours	Customized version of the EMPOWER platform for German public utility market & Nordic retailer market	Managing and optimizing multiple loads and feeds in a microgrid or congested local market	Creating and supporting a local energy community for different energy management purposes	System for forecasting loads, feeds and congestion problems
1	Increased feed-in of DER into the local grid. Increased flexibility at distributed levels	Increased feed-in of DER into the local grid. Increased flexibility at distributed levels	Increased feed-in of DER into the local grid, increased security of supply for end customers	Support of a local energy community for different energy management purposes	Improves the DSO's ability to forecast loads, feeds and congestion problems in a more precise way
	The end customer in the energy system	The end customer in the energy system	The local municipality of Hvaler and its 4.000 inhabitants	The end customer in the energy system	The local DSOs and their customers

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

EU-SYSFLEX

Pan-European system with an efficient coordinated use of flexibilities for the integration of a large share of RES

Demonstration that an efficient and sufficient level of system services are provided to help facilitate world leading levels of RES -E while maintaining the level of resilience that consumers and society expect from the European electricity system

	Years	Project total cost	Website	Coordinator's country	Coordinator	
20	2017-2021 26.5 M€ <u>http://eu-sysflex.com/</u>		2017-2021 26.5 M€ <u>http://eu-sysflex.com/</u>		Ireland	EirGrid
_	Types of	f technologies an	Partners	Countries involved		
	CONSUMERS	GRID STORAGE & POWER-TO-X	34	15		
KER		e the technical the EU system	Recommendations for enhancing the market and regulation	Demonstration of the o system services requi RE	red to integrate high	

914
Y

Two high RES-E scenarios for 2030 (commodity costs, generation, grid, dynamics): tools for studies of the future EU power system, and identification of emerging challenges and solutions.

enhancing the market and regulation framework Mitigation of the technical shortfalls faced in a high RES system and at

different stages of its evolution. Three different market modelling approaches providing recommendations on effective market structure

providing recommendations on effective market structures for flexible future systems.

Effective procurement of flexibility services Reduced costs and increased use of renewable generation TSOs and end-users

Demonstrations of six new sources of flexibility for systems operators

Development and testing of eight new ICT tools to facilitate the TSO/DSO interactions and cross border exchanges

Trial of four innovative real time control and automation systems to ensure that the flexibility sources can be activated in an accurate and timely fashion

Demonstrations in multiple EU states to ensure the methods and results

Portfolio optimization tools to support trading and the reliable dispatch of multiple flexibility resources

Increase the flexibility of the system. Reduce costs. Increase use of renewable generation

TSOs, technology providers, academia

Strengthen the capability of

beneficiaries to study the

future system, identify challenges and solutions

TSOs and end-users

KER

Tools and procedures for transition from system services to the massive integration of RES

Development of a flexibility roadmap

Development of a decision support tool to simulate real time operations for testing the compatibility of system services: realistic model of the detailed operation of the Polish and German systems (and neighbours)

Development of a single, formalized procedure for performing qualification trials for the procurement, integration and monitoring of new services and technologies

Quantification of the effectiveness of the solutions to address technical shortfalls using indicators: stability, capability for frequency and voltage regulation, ramping and balancing, RES curtailment, network congestion and system costs, RES curtailment, technology revenue

Reliability models for three new services
Provision of an order of magnitude estimate of the
volumes (as a function of costs) that solutions can
reach if barriers to scalability and replicability are
removed (including ICT and data issues)

Support TSOs with the transition from system services to the massive integration of RES. Reduce costs and increase use of renewable generation

Remove and overcome the technical, regulatory, communication or system operator issues. Reduce costs and increase use of renewable generation

TSOs and end-users

TSOs and end-users

FLEXCOOP

Democratizing energy markets through the introduction of innovative flexibility-based demand response tools and novel business and market models for energy cooperatives

Introduction of an end-to-end Automated Demand Response Optimization Framework allowing energy cooperatives to introduce themselves in energy markets under the role of an aggregator. Equipment of cooperatives with innovative and highly effective tools for the establishment of robust business practices to exploit their microgrids and dynamic VPPs

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2020	4 M€	http://www.flexcoop.eu/	Germany	Fraunhofer
Types of technologies and services tackled		Partners	Countries involved	

	CONSUMERS MARKET	14 10	
KER	FLEXCoop OSB Smart Home Sensing and Control Device	HYPERTECH's Visual Analytic	s Platform
V	Home gateway (ONEM2M Gateway) compliant with EU standards	Flexibility Forecasting, Segmentation, and Clustering Module	Classification
	Comfort and energy savings	Enhanced analytics: energy savings a services to customers	nd customized
P	Customer	Customer	

FLEXICIENCY

Energy services demonstrations of demand response, FLEXibility and energy effICIENCY based on metering data

On the basis of a technical model reflecting a common framework for data exchange at EU level, demonstration of novel energy services in the electricity retail markets, accelerated via an open EU Market Place for B2B interactions developed in the project

Years	Project total cost	Website		Coordinator's country		Coordinator
2015-2019	19.1 M€	www.flexiciency-h20	020.eu/	Italy		E-DISTRIBUZIONE SPA
Types of technologies and services tackled			led	Partners		Countries involved
	CONSUMERS	STORAGE & MARKET		18		10
KER	EU Ma			ta modelling and ssion protocol based on CIM	Ad	vanced services based on data exchanged
Ÿ	To catalyze the between the rel of the electric sy	evant stakeholders	extended	dard adapted and and requirements for cation at B2B level	local	nced monitoring services, energy control and flexibility ces, based on data exchange
		dardized oss-country & cross- o data and services	Standard facilitatio	ization: data exchange n	inforr	er quality and quantiy of nation; active participation for ner in the energy market
	Energy market	players	B2B play	ers	Final	customers

Partners

27

FP7 & H2020 PROJECTS

FLEXITRANSTORE

energy)

An Integrated Platform for Increased FLEXIbility in smart TRANSmission grids with STORage Entities and large penetration of Renewable Energy Sources

Types of technologies and services tackled

STORAGE &

POWER GENERATION

MARKET

Countries involved

12

Development of the next generation Flexible Energy Grid (FEG), which will provide the technical basis supporting the valorisation of flexibility services and enhancing the existing European Internal Energy Market (IEM)

Years	Project total Website		Years , website Coc		Coordinator's country	Coordinator
2017-2021	21.7 M€	www.flexitranstore.eu	Belgium	European Dynamics Belgium S.A.		

KER	RES storage integration	FACTS devices for congestion relief	Market platform	Flexible and stable conventional generation	Demand side flexibility at the TSO-DSC border
*	Mitigate RES volatility towards a "near- dispatchable" nature	Relieve congestion, exploit remaining grid capacity	Demonstration of an elaborated market platform that remunerates flexibility services through the wholesale market.	Solutions tailored for GT plants to improve stability from low frequency oscillations and provide several services: frequency response capacity, black-start	Controllers and battery storage situated at the TSO-DSO border
	Less volatility and balancing services	Increase RES penetration and cross-boarder trading, defer new infrastructure investments	Incentives for providing flexibility services by stakeholders, liquidity to suppliers and producers by flexibility remuneration, defer of investments	More flexibility resources for higher RES penetration, reliability and quality of supply	Increase the available flexibility resources
O	User, TSO, Customer (more clean	TSO, DSO	User, Market, Stakeholders	Producers, TSOs, Customers	TSOs, DSOs

FLEXTURBINE

Flexible Fossil Power Plants for the Future Energy Market through new and advanced Turbine Technologies

Development of a technology roadmap consisting in: new solutions for extended operating ranges to predict and control flutter, improved sealing and bearing designs to increase turbine lifetime and efficiency by reducing degradation/damages, improved lifecycle management through better control and prediction of critical parts to improve competitive costs by more flexible service intervals and planned downtime, and by reducing unplanned outages

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	10.6 M€	http://www.flexturbine.eu/	Czech Republic	DOOSAN SKODA POWER SRO

Types of technologies and services tackled Partners Countries involved

POWER GENERATION

24

7

KER	Flutter-resistant turbine blade design	Innovative seals and bearings design for steam and gas turbines	Improved life cycle management
V	Improvement of the capability to predict the occurrence of flutter	Provide and maintain reduced leakage flow and allow robust operation at strongly transient conditions	Improvement of the test result database, better mathematical models, accurate prediction of transient temperature fields, and effect on stresses
	Prevent risk of failure in the machinery and the corresponding outages	Fast ramp-up while increasing the efficiencies by 0.5 %. Reduction of wear in key locations by up to 80 % and life cycle cost (increasing service intervals by 30% to 50 %)	Operating hours between service intervals increased by 30% to 50%. Support of the grid stability with less outages and less stand-still. Reduction of costs of operation and hence, costs of energy production.
	Turbomachinery OEM, power plant operators, DSOs	Turbomachinery OEMs, Suppliers, power plant operators, DSOs	Turbomachinery OEMs, power plant operators

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

FUTUREFLOW

Designing eTrading Solutions for Electricity Balancing and Redispatching in Europe

Design and pilot testing of comprehensive techno-economic models for open and nondiscriminatory access of advanced consumers and distributed generators to a regional platform for ancillary/balancing and redispatching services

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	13 M€	http://www.futureflow.eu/	Slovenia	ELES

Types of technologies and services tackled Partners Countries involved

KER	Definition of power consumers and DER owners that can become secondary reserve (aFFR) market providers	Techno-economic model to optimize coupling of secondary reserve (aFRR) markets	Cyber secure Flexibility Aggregation Platform and Regional Balancing and redispatching cross-border platform	Deployment roadmap for most promising use cases for cross-border exchange of aFRR with DR and DER
Ÿ	To convince all market players and regulators about the soundness of the technical and market design approach about aFFR market providers.	Increase balancing market liquidity, reducing costs of RES integration and security of supply, with accommodation of massive intermittent generation.	To reduce the gap in electricity end-uses prices for industry vis-àvis the EU major trading partners	To describe how integrated balancing markets work and what can be anticipated with its expansion from 4 countries to EU wide.
	Higher social welfare for society, increased competition, lower CO2 emissions.	Higher social welfare for society, increased competition, lower CO2 emissions.	Restoring and maintaining the competitiveness of the EU energy-intensive industries.	To expand all benefits of an integrated market highlighted by the project to EU wide framework.
	Customer, TSO, aggregator, regulator	Customer, TSO, aggregator, regulator	Customer, TSO, aggregator, regulator	Final user, DSO, TSO

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

GOFLEX

Generalized Operational FLEXibility for Integrating Renewables in the Distribution Grid

Innovation, integration, and demonstration of a group of electricity smart-grid technologies for managing flexibility in energy production and consumption

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	11.2 M€	http://www.goflex-project.eu/	Ireland	IBM IRELAND LIMITED

Types of technologies and services tackled Partners Countries involved

CONSUMERS GRID STORAGE & MARKET 12 6

KER

Energy flexibility management system

An integrated system, applicable to small, medium and large prosumers, for the automatic management of energy flexibility

15% increase in electricity load adaptability. Prosumers' flexibility; deferring grid investments and reducing balancing costs

Prosumers, utilities

GRIDSOL

GRID

5

Smart Renewable Hubs for flexible generation: Solar Grid Stability

MARKET

Provision of secure, clean and efficient electricity by combining primary renewable energy sources and technology under an advanced control system called Dynamic Output Manager of Energy (DOME) supplying secure electricity and contributing to grid stability

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	3.4 M€	http://www.gridsolproject.eu	Spain	Cobra Instalaciones Y

Types of technologies and services tackled Partners Countries involved

10

New business models Integration of **Smart Renewable CSP Multi-tower Dynamic Output KER** for Hybrid RES storage in Hubs Manager of Energy concept existing plants Dispatchable plants To deliver fully To ensure optimal techno-To reduce cost/benefit To identify new business Flexible opportunities, with dispatchable RES economic dispatch among ratio of Concentrated generation Solar Power profitable hybrid RES & power plants generators and storage technology Storage units systems Reduction of power Increase RES and their To increase the Market uptake of RES and Reduction of generation, system controllability on generation competitiveness of storage technologies generation costs, costs and CO2, increase side, improve power network Concentrated Solar reduction of the of RES and planning and operation, Power technology, to customer energy competitiveness, market reduce RES curtailment facilitate RES bill uptake of new storage integration technologies Generator, Power Generator, Independent Generator, Utility Project Developer, Generator. Producer, Power Plant Generator, Utility Power Producer, Utility, (transmission and ecosystem Owner, Project Prosumer distribution grids) developer

H2FUTURE

Hydrogen meeting Future needs of low carbon manufacturing value chains

Generation of green hydrogen from electricity from renewable sources. Support by the Austrian TSO APG of the prequalification of the electrolyser system for the provision of ancillary services

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2021	17.8 M€	https://www.h2future-project.eu/	Austria	VERBUND

Types of technologies and services tackled Partners Countries

STORAGE & MARKET

6

Countries involved

KER

Integration of state-of-the-art PEM electrolyzer technology combined with grid services into the steel manufacturing process

Storage of electric energy with hydrogen as energy carrier.

Scalable power/energy shifting possibilities. Higher liquidity of the national balancing market. Multisectoral aproach. Power and energy intensive steel industry provides "storage" functions to the electricity system. Reduction of CO₂-emissions of steel manufacturing industry.

Steel industry. Transmission System Operator. Electricity supplier. End user.

IDISTRIBUTEDPV

Solar PV on the Distribution Grid: Smart Integrated Solutions of Distributed Generation based on Solar PV, Energy Storage Devices and Active Demand Management

Development of affordable integrated solutions to enhance the penetration of distributed solar PV (buildings)

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2020	2.7 M€	http://www.idistributedpv.eu/	Spain	APPA

Types of technologies and services tackled Partners Countries involved

| Solutions for large penetration of distributed solar PV | Solutions for large penetration of distributed solar PV | Approaches about the role of the different players in

based on real operational conditions and real EU distribution networks

Approaches about the role of the different players in the penetration of distributed solar PV: prosumers, solar PV promoters, load aggregators, DSOs, integration with the electricity system, etc.

Sustainable electricity at lower price.

Higher penetration of solar energy

Sustainable electricity at lower price
Opportunity to sell the excess of the production to
third parties

Policy makers, technology manufacturers, standardization bodies, society

Prosumers, society

INTEGRIDY

Integrated Smart GRID Cross-Functional Solutions for Optimized Synergetic Energy Distribution, Utilization Storage Technologies

Facilitating the optimal and dynamic operation of the Distribution Grid, fostering the stability of the electricity grid and coordination of distributed energy resources, Virtual Power Plants and innovative collaborative storage schemes within a continuously increased share of renewable energy

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2020	15.8 M€	http://integridy.eu/	Spain	ATOS SPAIN SA

2017-2020	15.8 M€	http://integridy.eu/	Spain	ATOS SPAIN SA
Types of technologies and services tackled		Partners	Countries involved	
CONSUMERS	STORAGE & PO	WER ERATION MARKET	30	6

KER	MV Distribution Networks Management tool	Multi-carrier hub Optimisation engine	Heat pump control hub	Kisense Energy Management System	Intelligent Building Control & Flexibility Prediction- Forecasting Tool
	To support DSO in operating the grid, in scenarios with great penetration of Dispersed Generation	To provide flexibility services to the DSO responsible of the Medium Voltage (MV) line which the micro-grid is connected to	To integrate a network of PV, solar thermal, heat pump, immersion heaters, thermal storage, and electrical storage into a single entity	To deliver state-of-the-art Demand Response technology, integrating energy measurements (such as electrical and thermal) and environmental data (such as temperature and humidity) analysis and providing information regarding past and real- time information	Identification and automated optimal management of a building's assets, based on their forecasted energy flexibility, allowing active Demand Response schemes to be applied.
	Preliminary results: Energy losses in the MV distribution grid improved up to 20% and hosting capacity limits for 10%. Benefit in the overall management of the electric grid: maximization of the system reliability and a reduction of the energy costs. New business opportunity will arise for all the users of the electric grid	Economic advantage from the optimisation. To monitor and control the available DER in order to properly evaluate and satisfy the local electric and thermal needs. Low maintenance expenses for DSOs thanks to the increase of flexibility services offer	Job creation. Reduction of energy costs for residents (around £500 per annum). Each system saves 4000kg CO ₂ per annum in 3 residential properties. (Installing the system in 5000 properties results in savings of 6500 tonnes CO ₂ per annum).	Improve interoperability with third party systems, reducing future implementation costs and enhance market access of proposed VPS solutions. Cost reduction; enhancement of competitivity of DR tool; Increase feeling of social belonging with sharing benefits mechanisms; Increase of renewables and energy efficiency; Research on energy optimisation and innovative energy business models; Integration failure reduction with third party systems.	Exploitation of energy more efficiently and economically
	DSOs and final users	Micro-grid Energy Managers, DSOs	Final users	Microgrid members/ owner, the building owners or a DSO	Building / Facility Manager. Energy Utility company / Retailers, utilizing DR services

INTERFLEX

Interactions between automated energy systems and Flexibilities brought by energy market players

Project total

Investigation of the INTERactions between FLEXibilities provided by energy market players and the distribution grid. This project focuses on energy storage, smart charging of electric vehicles, demand response, islanding, grid automation and integration of different energy carriers

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2019	22.8 M€	http://interflex-h2020.com/	France	ENEDIS
Types of technologies and services tackled			Partners	Countries involved
CONSUMERS	GRID STORAGE & POWER-TO-)	MARKET	20	6

KER	Enhanced DSO and aggregators platforms (and	Multi-services business models for battery storage,	Recommendatio ns for grid code evolutions allowing for an	New business models for optimization of DSO operation by exploiting the interaction with district heating, district	Recommendations and market organisation on running a planned	
	related interfaces)	including use of EVSE	increase in DER hosting capacity	cooling, micro-CHP or other multi-energy devices	and automated islanded mode	
Ÿ	To provide innovative energy services for all the players in the energy market: to use simultaneously flexibilities from multiple sources, to trade them locally on a "Local flexibility market", and to control them remotely (for instance through the German demo "Smart Grid Hub").	To test residential and larger, shared battery systems to relieve network congestion, and increase the renewable hosting capacity of the grid.	To increase DER hosting capacity thanks to using volt-var control V/Q or to using the Q(U) and P(U) characteristics of smart inverters.	To exploit untapped potentials for flexibility provision: flexible use of hybrid heating systems that can run on both electricity and gas and exploitation of termal inertia and the interaction between thermal and electricity grids.	Recommendations for the grid codes on the observability and management of microgrids: required technologies and sensors, communication infrastructure and role description, contractual relationships for market organisation.	
	Overcome the common market barriers. Enhanced observability, local energy control, flexibility services.	Reinforce system security, improve the distribution grid observability, solve congestion problems, while taking into account the need of EV users.	Increase DER hosting capacity in LV networks without the need of expenses for new interconnections and reconstruction.	Additional power flexibility provision, conversion of excess renewable power into heat, use of thermal inertia as a significant and cost-efficient source of flexibility.	Improvement of the security of supply for customers; enabling the community to support the use of the renewable energy via automated control of their residential assets.	
P	DSOs, agregators	DSOs, Aggregators, EV charging stations operators, battery storage owners.	DSOs, Battery storage operators.	DSOs, Local Energy Supply Companies, aggregators, Residential and commercial customers	DSOs, Local Energy Supply Companies, aggregators	

Partners

FP7 & H2020 PROJECTS

INTERPLAN

INTEgrated opeRation PLAnning tool towards the Pan-European Network

Countries involved

Provision of an INTEgrated opeRation PLANning tool towards the pan-European network, to support the EU in reaching the expected low-carbon targets, while maintaining network security

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2020	3 M€	http://interplan-project.eu/	Italy	ENEA

	CONSUMERS		6	5
KER	Integrated operation planning tool for the pan-European network	Grid equivalenting	•	control system ogics
	To provide an operation planning tool for grid equivalents, based on semi-dynamic simulations	Significantly reduce the complexity of investigations on distribution grid, by using appropriate grid equivalents	complexity of the and to address	a, regional and par
<u></u>	Achieving security in a low- carbon electricity system and ensuring that the future pan- European grid can host large quantity of RES and allow flexibility in the presence of DER	Providing a validated set of grid equivalents accessible by the public and helping DSOs to identify the optimal standard parametrization of small-scale DER	and advances relevant flexibil	work observability in managing all ity resources as ements" within the
P	TSO, DSO, regulator, network operator	DSO, customer, aggregator, balance Responsible Party BRP	DSO, TSO, ne	twork operator

MIGRATE

Massive InteGRATion of power Electronic devices

Types of technologies and services tackled

Development and validation of innovative, technology-based solutions in view of managing the pan-European electricity system experiencing a proliferation of Power Electronics (PE) devices involved in connecting generation and consumption sites

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	17.9 M€	https://www.h2020-migrate.eu/	Germany	TennetTSO GMBH

Types of technologies and services tackled Partners Countries involved

KER PE Penetration in power system

Security of Supply due to PE penetration through RES

Stable electricity grid and no black-outs

European Society

PLAN. INNOVATE. ENGAGE.

Partners

FP7 & H2020 PROJECTS

NAIADES

Na-Ion bAttery Demonstration for Electric Storage

Types of technologies and services tackled

Countries involved

Development and demonstration of the ambient Na-ion battery under realistic conditions as an effective alternative to the Li-ion battery for stationary Electric Energy Storage (EES) application

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2018	6.5 M€	http://www.naiades.eu/	France	CEA

	STORAGE & POWER-TO-X	10	6
KER	Development of electrode materials for Na-ion batteries	Scale up of positive material synthesis	Development of Na-ion Cells
	To provide new types of material: a polyanionic cathode and a layered oxide	To produce 50 kg batches of cathode materials	To provide the first large cylindrical cells of 8 Ah
	Better properties than Li-ion battery	Good electrochemical performances	High power and fast charging
	Battery manufacturers	Battery manufacturers	Users

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM

SMART
NETWORKS FOR
ENERGY
TRANSITION

NETFFICIENT

Energy and economic efficiency for today's smart communities through integrated multi storage technologies

Deployment and demonstration of local energy storage technologies, development of information and communication tools, to exploit the synergies between energy storage, the smart grid and the citizens

Ye	ears	Project total cost	Website	Coordinator's	country	Coordinator		
2015	2015-2018 11.4 M€		i-2018 11.4 M€ http://netfficient-project.eu/		Spain		Ayesa advanced technologies SA	
	Types of te	echnologies and	services tackled	Partners	s	Countries involved		
	CONSUMERS	GRID STORAGE & POWER-TO-X	POWER GENERATION MARKET	13		7		
KER	KER Energy Management Platform		Hybrid home energy storage system (LV-HESS)	A hybrid utility- scale energy storage system (MV-HESS)	MV-HESS- inverter	MV-HESS management-system		
	optimiz manag autono of DER Techno optimiz design data of genera trade e market	ement control and mous exploitation	n aggregated mode.	To allow the lengthening of the batteries life	To provide high density and scalable power electronics.	To allow simple management of different storage technologies and simple Gateway to Energy Managment system.		
	consun energy users; level in by gene energy model i makes new se Manage	ability; self- nption to save and costs for endecrease the CO the environment erating green ; new business to the market that possible selling a rvice: Energy ement and not lling energy	consumption. Lengthening the battery investment around 10-20%	Lengthening of the battery investment around 10-20%	Simpler and cost- efficient power electronics for industria applications	managing HESS Systems		
P	Custom	ners	Residential and small businesses	Utilities and DSOs	Customers	Producers of storage systems		

NOBEL GRID

New cost-effective business models for flexible Smart Grids

Provision of advanced tools and ICT services to all actors in the Smart Grid and retail electricity market in order to ensure benefits from cheaper prices, more secure and stable grids and clean electricity

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2018	14 M€	http://nobelgrid.eu/	Spain	Etra investigacion y desarrollo sa

2013-2016	14 IVI€	nttp://nobeigna.eu/	Spain	desarrollo sa
Types of technologies and services tackled			Partners	Countries involved
[POWER GENERATION	21	11

KER	SLAM: Advanced Smart meter with extended functionalities	G3M: Application for the monitoring, management and maintenance of distribution network	DRFM: Tool for intermediate entities (aggregators, ESCOs, retailers, etc.)	EMA App: Application for final consumers and prosumers	Nobel Grid Business Model Evaluation tool
	Provision of detailed energy information in real time, generating flexibility strategies, such as demand response	Manage and maintain the MV/LV grid taking advantage of new technologies, and complying with new policy imperatives and changing business frameworks	Bridges Demand-Side Resources and their flexibility with the distribution grid actors to improve the operation of the processes under their control	Get access to the energy data from the smart meter to enrich and make more understandable energy-related information	Calculation how profitable is a business model for different actors
	Reduction of energy consumption, emissions and billing in at least 20%	Reduction of the costs of management and maintenance of the distribution grid.	Reduction of consumption and emissions	Reduce the energy consumption and billing of the consumer	Generation of more benefits in a more efficient way
	Stakeholders of the smart grid: DSO, retailers, aggregators, ESCOs and final customers (industrial and domestic)	DSO, and operators of microgrids	Aggregators', Retailers' and ESCOs', with special focus to energy cooperatives and local communities	End users	Any type of companies that would like to make more economical benefits of a smart grid project or product

33

FP7 & H2020 PROJECTS

OSMOSE

Optimal System-Mix Of flexibility Solutions for European electricity

9

Flexibility for the integration of renewable energy sources, through a holistic approach in order to capture "silo-breaking" synergies across needs and sources flexibilities.

Years	Project total cost	Website	Coordinator's country	Coordinator
2018-2021	28.3 M€	https://www.osmose-h2020.eu/	France	Réseau de Transport d'électricité SA (RTE)
Types of technologies and services tackled			Partners	Countries involved

MARKET

KER	Optimal mix of flexibilities and related market design	Demonstrator of grid forming	Demonstrator of coordinated control of different storage and FACTS devices	Smart management system	Near real-time cross- border energy market
Ÿ	Holistic approach to assess the flexibility sources and propose improvements of the existing market mechanisms and regulatory frameworks	To test new grid forming algorithm	To answer a problematic of 3 problems in one coordinated system (voltage, frequency and capacity)	Multiple services provided by grid devices, large demand-response and RES generation	To catch the flexibility close to real time depending on real time constraints with short term forecast
	Forecast the optimal mix of flexibility solutions at pan- European system level, maximising social welfare	Synchronism in large power systems with high RES. Increase of the global efficiency for the consumer (grid forming and frequency control for example) and congestion management	Improve frequency control, dynamic voltage control and increase of net transfer capacity	Congestion management, system services form RES plants and Increasing Availability of System Services from DR through Aggregation	Enable market players to trade their residual flexible capacities
P	Market players, and policy makers	TSOs.	TSOs.	TSOs	Market players, TSOs

Coordinator's country

FP7 & H2020 PROJECTS

PLAN4RES

Years

providers, market

operators, etc.

Synergistic approach of multi-energy models for an european optimal energy system management tool

Project total

cost

Coordinator

researchers

Support to the main stakeholders of the European energy system (TSOs, DSOs, Utilities, Energy providers...) by helping them taking better decisions regarding the development and operation of their energy portfolio, also considering the emerging technologies and innovative flexibility sources while maintaining a high level of reliability

Website

20	17-2020	3.9 M€	https://www.plan4res.eu/	France	Electricité de France (EDF)	
Types of technologies and			d services tackled	Partners	Countries involved	
		GRID	RKET	7	5	
KER plan4res software		plan4res Case Studies	plan4res public dataset	Solvers and modelling system		
	Enhance grid for a capacity renewal combinion of the expectation	ement of the maximising its to host ole energies by ng the best use disting grid and estments on the astructure ement of the s flexibility by ng the best use	To model different questions and issues which might affect the different stakeholders: • Multi-modal European energy concept for achieving COP 21 goal considering sector coupling of electricity, gas, heat and transport demand • Strategic development of pan-European network considering long-term uncertainties • Cost of RES integration and impact of climate change for the European Electricity System	Public database giving the most possible accurate representation of the european energy system at a 2050 horizon, with hypothesis compliant with COP21 objectives	To solve related optimisation problems linked to high shares of renewable inducing more uncertainties, and coupling of flexibilities (multi energy) inducing high size problems	
		ge shares of n the system	Results from the case studies	Help researchers to conduct studies within a scenario with a high share of renewable	Optimization of problems coming from high share of renewables	
100	Energy cons	sumers, TSOs, ies, Energy	Project partners and energy stakeholders	Energy system stakeholders, researchers	Energy stalkeholders, software providers,	

PLANGRIDEV

Distribution grid planning and operational principles for EV mass roll-out while enabling DER integration

Development of new network planning tools and methods for European DSOs for an optimized large-scale roll-out of electromobility in Europe whilst at the same time maximizing the potential of DER integration

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2016	15.4 M€	https://cordis.europa.eu/project/rc n/109374_fr.html	Germany	RWE Deutschland Aktiengesellschaft

Types of technologies and services tackled

Partners

Countries involved

CONSUMERS

POWER-TO-X

12

9

KER

Methodology for combined EV and DER grid integration

Demonstration that grid integration of EVs and renewables can be optimized by IT control of charging and generation processes and use of storage if the regulatory frameworks allows the grid operators to control the processes (e.g. EV controlled charging,..)

Lower energy system costs

GRID

Electricity customer (industry as well as private household customers)

PROME3THE2US2

Production Method Of Electrical Energy by Enhanced Thermal Electron Emission by the Use of Superior Semiconductors

Development, validation and implementation of a novel solid-state conversion mechanism able to transform concentrated solar radiation into electric energy, at very high efficiency, with a direct conversion obtained by an enhanced electron emission from advanced semiconductor structures.

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2016	4 M€	https://cordis.europa.eu/project/rcn/ 108455 en.html	Italy	CONSIGLIO NAZIONALE DELLE RICERCHE

Types of technologies and services tackled Partners Countries involved

POWER GENERATION

8

5

KER

High-temperature solar cells

Dielectric microspacer

Higher output power and flexibility than the current solar conversion technology Thermal-to-electric converters working closely to ideal conditions. Can be employed in all applications needing high electrical and thermal insulation between two surfaces distant of few micrometres

Improvements of technology performances

Improvements of technology performances. Maximum conversion efficiency close to 70% (simulation) Industrial hardware developers of solar

conversion technologies

Industrial hardware developers

(P)

PLAN, INNOVATE, ENGAGE,

Partners

FP7 & H2020 PROJECTS

REALVALUE

Realising Value from Electricity Markets with Local Smart Electric Thermal Storage Technology

Types of technologies and services tackled

Demonstration, through the deployment of Smart Electric Thermal Storage (SETS) technology in 1,250 properties in Ireland, Germany and Latvia, of how it can provide value and benefits to the whole electricity supply chain

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2018	15.4 M€	http://www.realvalueproject.com/	Ireland	Glen dimplex ireland

		CONSUMERS STORAGE & POWER-TO-X MARKET		12	5
KER	DSM Smart Power system Tariff modelling and market modelling		VPP optimisation algorithm	Consumer engagement guidance	Understanding of grid and network constraints
Ÿ	To customise the benefit from variable electricity pricing	Modelling of systems which are relevant for thermal storage - possibility on electricity networks	Simplified process for managing numbers of complex devices to provide value for system operators	Guidances for interaction with large number of consumers across different demographics	Practical learnings on wide spread use of flexible devices for DSM purposes on distribution networks
	Value for en- users	Ability to quickly assess the potential of innovative technologies on the electricity system	Optimisation against many different criteria (environmental, financial)	Commercial: Better interaction with end consumer; Societal: minimised disruptions	Investment deferral on distribution networks - less need for upgrading of lines wires/cables
	End consumer	Academia, system & market operators	System operator – consumer	End consumer and Businesses	Systems operators

RESERVE

Renewables in a Stable Electric Grid

Countries involved

New energy system concepts, implemented as new system support services, enabling distributed, multi-level control of the energy system using pan-European unified network connection codes

Years Project total cost		Website	Coordinator's country Coordinator	
2016-2018	5 M€	http://www.re-serve.eu	Germany	ERICSSON GmbH

	Types of technologies and service	es tackled	Partne	ers Countries involved
	GRID		11	4
KER	New techniques for frequency management with up to 100% RE		iques for voltage n up to 100% RES	Villas node co-simulation Software
V	Continued stable operation of the pow grid even when the proportion of RES generation reaches very high levels ar the use of fossil fuels is reduced	the proportion	sed on RES	Enabling co-simulation of very complex power network scenarios
	Lower climate impact of power general enabling environmental goals to be reached, stable power supplies	generation er environmenta		The software will contribute towards stablising future power networks with up to 100% RES generation, without hydro-electric power
	TSOs, society as a whole	TSOs, society	y as a whole	Society as a whole

SENSIBLE

Storage ENabled Sustalnable energy for Buildings and communitiEs

Development, demonstration and evaluation of a storage-enabled sustainable energy supply for buildings and communities

Ye	ears	Project total cost	Websi	te	Coord	inator's country	Coordinator
2015	5-2017	6.1 M€	http://www.h20		Germany		Siemens Aktiengesellschaft
	Туре	es of technolog	jies and services tackl	ed	ı	Partners	Countries involved
	CON	SUMERS GRID	POWER GENERATION MARKET			14	5
KER	building	ti-modal g automation ystem	Storage as an integrated smart grid asset	Residential h energy manageme solution	ent	Socio-economic effects of local storage	Cost/benefit assessment methodology for network planning with local storage
V	consum generati	I energy ption and on by using Il and thermal	Development, demonstration and evaluation of a storage-enabled sustainable energy supply for buildings and communities	Control of resid assets (PV, wat heaters, resider batteries, control loads) in an aggregated way	ter ntial ollable	Contribution to bridge the gap in understanding and accounting for social attitudes towards energy storage	gauge of the investment level
	efficience energy s (storage compon- heater, h ventilation	and other ents, e.g. PV, neating on).	Increase of quality and continuity of service, reduction of technical losses, more extended grid reliability (in islanding operation)	Energy price reduction by bri the gap betwee citizens and end markets	idging en ergy	Opportunity to influence public acceptance of energy storage, thus inducing improved community resilience pride and trust as well as willingness the share excess energy	investments e,
	Technol	ogy providers	DSOs, consumers	DSOs, utilities, retailers, aggregators, consumers		DSOs, infrastructure providers, society as a whole	•

SHAR-Q

Storage capacity over virtual neighbourhoods of energy ecosystems

Optimisation of storage capacities deployed in the grid with the help of a peer-to-peer interoperability network that connects neighbourhooding RES+Storage ecosystems into a collaboration framework

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	4 M€	http://www.sharqproject.eu/home	Spain	ATOS SPAIN SA

Types of technologies and services tackled Partners Countries involved

STORAGE & POWER-TO-X

POWER GENERATION

MARKET

11

7

KER

SHAR-Q Platform

Interoperability network that connects the capacities of the neighbourhooding and wide regional Renewable Energy Sources (RES) and Electrical Energy Storage (EES) ecosystems into a collaboration framework that mitigates the requirement on the overall EES capacities thanks to the shared capacities among the participating actors following a decentralised approach

Sharing distributed resources and providing added-value services to exploit the interoperability among resources, not only benefit users but also create a new business ecosystem with novel services based on data

Energy infrastructure operators, ICT players

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

Coordinator's country

FP7 & H2020 PROJECTS

SMARTEREMC2

Smarter Grid: Empowering SG Market ACtors through Information and Communication

Project total cost

Coordinator

Technologies

Years

Implementation of ICT tools that support the integration of consumers through Demand Response services and the integration of DG/RES through Virtual Power Plants

Website

2015-2017	7 3.8 M€	http://www.sma	arteremc2.eu/	Greece	Intracom SA telecom Solutions
	Types of technolog	jies and services tack	led	Partners	Countries involved
	CONSUMERS	GRID		11	6
KER	Demand Response Management System (DRMS)	Virtual Power Plant Management System (VPPMS)	Energy Hub (E	Smart Grid data EH) analytics platform (SDAP)	Algorithms for bad data detection for Smart Grids
	ICT enabler for delivering / leveraging demand side management as an option for injecting flexibility in the operation of the Distribution Grid	ICT enabler to aggregate and manage flexible assets (DERs, distributed storage units, loads)	ICT enabler for better managem of the Distributio Grid	, , ,	To detect both stealthy and non-stealthy attacks. To quickly identify which node has been attacked. To advise how to change system topology to avoid future attack
	For DSO: provision of the necessary flexibility, solving grid problems. For DRA: provision of DR services to the DSO, or participation in the energy market	Load and production forecasting	Better managem of the Distributio Grid		Improvement of the cyber security of the grid
	DR Aggregators, DSOs	VPP Operators and DSOs	DSOs, Microgrid Operators	I ICT solution providers	ICT solution providers

SMARTNET

Smart TSO-DSO interaction schemes, market architectures and ICT Solutions for the integration of ancillary services from demand side management and distributed generation

Provision of optimised instruments and modalities to improve the coordination between the grid operators at national and local level (TSOs and DSOs) and the exchange of information for monitoring and for the acquisition of ancillary services (reserve and balancing, voltage balancing control, congestion management) from subjects located in the distribution segment (flexible load and distributed generation)

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	12.7 M€	http://smartnet-project.eu/	Italy	RSE - Ricerca sul Sistema Energetico

2010-2016	12.7 IVIE	nup.//smarmer-project.eu/	italy	Sistema Energetico
Types of ted	Types of technologies and services tackled			Countries involved

KER	SmartNet TSO-DSO ancillary services market simulator	SmartNet testing facility for DSO system monitoring and control	SmartNet testing facility for AS provision from thermostatically controlled loads	SmartNet testing facility for AS provision from localized storage facilities	An analysis procedure to discover ICT requirements in energy systems
	Comprehensive model including transmission, distribution, DER for detailed technical economic assessments	Real time monitoring and control of distribution grid located DER from the national TSO	To use a scattered amount of thermostatically controlled loads as flexibility resources	To use a scattered amount of localized storage systems- controlled loads as flexibility resources	Possibility to maintain links between data flow diagrams and ICT requirements in SGAM tools; and to use parametrized scripts to alter ICT requirements and to assess their impacts on the system design
=	Better know-how on optimized TSO-DSO interactions and market modality to enable AS from distribution	Increase flexibility, system costs reduction, further business possibilities for DER	Increase flexibility, system costs reduction, further business possibilities for DER	Increase flexibility, system costs reduction, further business possibilities for DER	More successful system design
	TSO, DSO, regulators, EC	TSO and DSO, utilities, final users	TSO and DSO, utilities, final user	TSO and DSO, utilities, final user	TSO, DSO, ICT companies, Ancillary service providers

SMILE

SMart IsLand Energy systems

Demonstration of different innovative technological and non-technological solutions in largescale smart grid demonstration projects in islands, paving the way for their introduction in the market in the near future

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2021	14 M€	http://www.h2020smile.eu/abo ut-the-project/	Italy	RINA CONSULTING SPA

	Types of technologi	Partners (Countries involved		
CONSUMERS GRID STORAGE & POWER-TO-X GENERATION MARKET				19	6
KER	Battery Energy Management System	Load Controller	EV managed charging	Energy Managemen System	t PCM storage systems
V	Management of storage	Control of loads/Aggregator	Smart charging of Electric Vehicles	Efficient Energy Management	Heat storage
	N.A.	N.A.	Effective management of Electric Vehicle charging	N.A.	N.A.
	Customer	Customer	Customer/user	Customer	User/customer

SOGNO

Service Oriented Grid for the Network of the Future

Provision of turnkey services for DSOs implementing next generation data-driven monitoring and control systems, based on 5G based ICT. Combination of hardware, software solutions and research activities on different areas, such as advanced deep learning, 5G communication, and cloud virtualisation, to build a new philosophy of electrical grid management

Years	Project total cost	Website	Coordinator's country	Coordinator
2018-2020	5 M€	https://www.sogno-energy.eu/	Germany	Ericsson GmbH

Types of technologies and services tackled Partners Countries involved

CONSUMERS GRID 13 6

KER

Turnkey distribution automation services

Services implementing next generation data-driven monitoring and control systems, based on 5G based ICT State of the art algorithms optimizing power network status transparency with a low number of sensors per 100 nodes in the power network

Possibility to upgrade the solution without the need to visit a customer site as it is provided as a virtual service

Power networks more stable and run more efficiently reducing environmental impact of power generation and reducing minutes of service lost to customers

Enhancement of transparency of the status of the network, thus increasing network operation efficiency. Reduction of investment budgets for distribution system automation for utilities

Society, Consumers, DSOs / Utilities

STORE&GO

Innovative large-scale energy STOragE technologies AND Power-to-Gas concepts after Optimisation

Integration of Power-to-Gas into the daily operation of European energy grids to demonstrate the maturity of the technology and identification of current and future PtG business cases to develop a European PtG roadmap

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2020	28 M€	http://www.storeandgo.info/	Germany	DVGW

Types of technologies and services tackled **Partners** Countries involved 6

27

KER

Demonstration of innovative PtG technologies

European-wide definition of the future role of PtG in the energy system and recommendations for the regulative and economic implementation

Evaluation of business cases for potential users, investment and operation costs perspectives, analysis of ecological effect of PtG technologies, assessment of social acceptance of PtG

Politics, TSO, utilities, manufacturers of PtG technologies

SUCCESS

Securing Critical Energy Infrastructures

Design, development and validation on small scale field trials of a novel holistic adaptable security framework able to significantly reduce the risks of cyber threats and attacks when next generation, realtime, scalable, unbundled smart meters are deployed in smart electricity grids

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	5 M€	https://success-energy.eu/	Germany	Ericsson GmbH

Types of technologies and services tackled	Partners	Countries involved
CONSUMERS GRID MARKET	17	8

KER	Pan-European Security monitoring centre for Critical Infrastructures
114	I dentification at an apply atoms of attacks assessment

A range of innovative countermeasures improving the cyber-security and resilience to attacks of critical infrastuctures

Identification at an early stage of attacks across many countries on critical infrastructure using the project pan-European monitoring approach, enabling countermeasures to be deployed more quickly and disruption to be minimized

Availability of countermeasures that, after rapid identification of attacks through the monitoring system, can limit the impact of future attacks and enable faster resumption of service to consumers

Reduced disruption by cyber-attacks on critical infrastructures, benefiting citizens and society in general. More stable operation of critical infrastructures providing an improved basis for industry to thrive. Enhanced technology for the detection of sophisticated cyber-attacks on critical infrastructures

More stable critical infrastructures with benefits for the individual user and for society in general. Technical advances made by the project enhance the security and resilience of infrastructure to cyber attacks

Citizens and society in general, critical infrastructure owners

Citizens and society in general, critical infrastructure owners

SUNSEED

Sustainable and robust networking for smart electricity distribution

Evolutionary approach to utilisation of already present communication networks from both energy and telecom operators, to be suitably connected to form a converged communication infrastructure for future smart energy grids offering open services

Years	Project total cost	Website	Website Coordinator's country	
2014-2017	4.7 M€	http://sunseed-fp7.eu/	Slovenia	Telekom Slovenije DD
Types o	of technologies a	nd services tackled	Partners	Countries involved
	GRID		9	6
	KER	Methodology for monitoring	g electricity distribution gric	ls
		emonstrating that public Long Tetwork can be used for monitoring		nication

<u>-11</u>

Increasing grid availability, possibility to include more renewable sources of energy

Electricity distributor, end-user, environment

TILOS

Technology Innovation for the Local Scale, Optimum Integration of Battery Energy Storage

Demonstration of the potential of local / small-scale battery storage to serve a multipurpose role within a smart island microgrid that features high shares of renewable energy and trades electricity with the main electricity network

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2019	13.7 M€	http://www.tiloshorizon.eu/	ww.tiloshorizon.eu/ Greece	

Types	of technologies and services ta	Partners	S Countries involved	
CONSUME	CONSUMERS GRID STORAGE & POWER GENERATION MARKET 13		7	
KER	Integrated NaNiCl2 Battery & Grid-forming Battery Inverter	Prototype Smart Mete DSM Panel	r &	Forecasting Platform
V	MW-scale multi-functional BESS supporting island operation	Smart Meter & DSM Pane the monitoring and remote control of residential and o type of loads	e a	Robust forecasting platform ble to interface EMS
High shares of renewable energy		Monitoring and remote con of loads		oster increased RES ontribution
	Operator scheme of the Hybrid Power Station in Tilos island	End-users of Tilos island a leader beneficiary		Members of the beneficiaries nat developed the platform

Partners

FP7 & H2020 PROJECTS

TURBO-REFLEX

TURBOmachinery REtrofits enabling FLEXible back-up capacity for the transition of the European energy system

Types of technologies and services tackled

Countries involved

Provision of technology upgrades to retrofit the installed power plants to enable flexible operation without penalties on life, cost and emissions

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2020	8.1 M€	https://www.turbo- reflex.eu/	Germany	General Electric deutschland holding gmbh

	GENERATION		23	9
KED	Reduction of costs per	Increasing low load	Increasing load	following

KER	Reduction of costs per cycle	Increasing low load capability of existing plants	Increasing load following capability
V	Methodology to increase part load efficiency, resistance to wear and accurate life information	Reduction in the number of hot starts by increasing the low load capability of existing plants	Doubling the ramp rate to allow thermal plants to better follow the load requirements of the system
	30% reduction of cycle costs: security of supply and stability of the transmission grid	33% reduction in the number of hot starts: security of supply and stability of the transmission grid	10% of the installed fossil capacity in Europe could be retrofitted by 2030. Potential annual cost reduction of 100 million EUR at the European leve by reducing variable operation and maintenance costs
P	DSO	DSO	DSO, and end users

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

UPGRID

Real proven solutions to enable active demand and distributed generation flexible integration, through a fully controllable LOW Voltage and medium voltage distribution grid

Focus on addressing the constraints and needs arisen from poor observability of LV grid, local accumulation of distributed generation, risks and difficulties in managing the distribution network, aging infrastructure and social and environmental restrictions that inhibit the grid development. The project proposes an open, standardised and integral improvement of the LV grid

Yea	rs	Project tot	al cost	Website		Coordinator's country	Coordinator
2015-2	2017	15,7 N	Л€	<u>http</u>	://upgrid.eu/	Spain	Iberdrola distribucion electrica, s.a.
	Туре	s of technol	ogies and	d services ta	ckled	Partners	Countries involved
		CONSUMERS	GRID	MARKET		19	7
KER	Low Voltage KER Network Equipmer Management LV/MV net System			LV software tools	New Generation Hom Gateway and Home Energy Managemen application	PRIME Network Management	
	Support accurat reliable decision process	e and LV O&M ns and	monitor,	solutions to automate rol LV/MV	Monitor the LV grid based on information provided by smart meters, existing systems and RTUs	Leverage the implementation of additional services on to of the UPGRID HEMS development	Enables a PRIME multiservice network, for example, combine AMI and control over LV network.
	the LV the res	ion of time in the detection of network incidences /faults ir network (36 minutes improvement) + Reduction of time ir solution of the incidences/faults in the LV network (16 s) = nearly 1 hour less lack of electricity service to ou ers		n development kit, with 6 libraries and			
	DSOs,	Software deve	eloppers a	eloppers and customers		Software developers, liberalised agents, and Customers	DSOs, Software developpers and customers

WISEGRID

Wide scale demonstration of Integrated Solutions and business models for European smartGRID

Provision of a set of solutions and technologies to increase the smartness, stability and security of an open, consumer-centric European energy grid

Yea	Years Project total cost Website Coordinator's country			Coordinator					
2016-	2020	020 17.6 M€ http://www.wisegrid.eu Spain		Etra investigacion y desarrollo sa					
	Types	of technologic	es and se	ervices tackled		ı	Partners	Co	untries involved
	CONSUME		PC VER-TO-X	OWER ERATION MARKET			21		8
KER	WG Cockpit: cockpit for DSOs or microgrids KER operators to control, manage and monitor their own grid WiseCORP: corporate deals w application to relievi become active, beneficiarie smarter energy administr players procedure cumbers resear		tion energy WiseEVP: thile tool/platform used ng by EVSE operators es from and EV fleet managers es and managers		WG FastV2G: fast EV charging station				
	small dis	control of tribution with DER	energy a	ment of the assets of a allowing DR	Strengthen D means of DEI		Management of smart charging sessions		Allow V2G activities in EV charging sessions
	stability a of the ne	g flexibility, and security twork with asing share	supporti	Reducing energy bill, 15% and 32% of Optimization of supporting self-energy savings to its customers smart charging of discharging or optimization of activities relative smart charging or optimization of the support		Optimization of the activities related smart charging a discharging of the EVs and reduce energy billing	with nd	Use EV as dynamic distributed storage devices, feeding electricity stored in their batteries back into the system when needed (fast V2G supply)	
	Small DS	SOs		es, ESCOs lic facilities ers and	Energy retaile aggregators, communities cooperatives consumers ar prosumers (a intermediary companies)	local and of nd	EV fleet manager and EVSE Opera		EVSE Operators

Austria

LEAFS

Integration of Loads and Electric Storage Systems into Advanced Flexibility Schemes for LV Networks

LEAFS

Evaluation of the effects of increased costumer and energy market driven utilization of energy storage systems and load flexibility on power distribution grids. Technologies and operation strategies are developed enabling optimal use of distribution grid infrastructure by activating flexibilities using direct or indirect control by the local grid operator or incentives

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	3.3 M€	https://www.ait.ac.at/en/research- fields/smart-grids/projects/leafs-lv- loads-and-storage-integration/	Austria	Austrian Institute of Technology

Types of technologies and services tackled **Partners Countries involved** MARKET

N.A.

TRANSITION

1

KER

Active Intelligent Control of Flexibilities

Multi-Use (Grid, Customer and Market) intelligent Control of a Central Storage

More PV Integration, Local Consumption of Renewables, Less CO₂ emissions. Flexible integration of distributed energy resources at minimum network reinforcement costs as well as higher self-consumption level for customers Customer and Solution Providers.

PLAN. INNOVATE. ENGAGE.

PLATFORM

SMART GRID BATTERY STORAGE PROJECT PROTTES

PROTTES

Multimodal operation of battery storage for grid services and ancillary services

Presentation of how battery systems can contribute to system stability in addition to the contribution for providing ancillary services with high share of renewable energy

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	4.7 M€	https://www.netz-noe.at/Netz- Niederosterreich/Wissenswertes- 2/Forschungsprojekt.aspx	Austria	Netz NÖ GmbH

	Types of technologies and serv	vices tackled	Partners	Countries involved
	GRID STORAGE & POWER-TO-X	KET	N.A.	1
KER	Multimodal operation of battery systems	Synthetic (virtual) inertia	Business Models for battery systems	Battery systems as an alternative to grid reinforcement
	Operation for two or more functions simultaneously: primary regulation, static voltage level maintenance, reactive power injection, etc.	Test and proof of the provision of virtual inertia by battery systems	Improved economy of battery systems by simultaneously running more than one function	Recommendations for adapting regulations
	Provision of ancillary services, participation in system stabilisation and facilitation of renewable integration	Stability of electrical grids	Speeding up the implementation of battery technology, improvement of grid stability	Cost decrease for services for system stability
	Electricity companies, grid operators	Grid operators	Grid operators	Grid operators

UNDERGROUND SUN.STORAGE

All stakeholders in a renewable energy system, and society

Storing energy from wind and solar power below ground

All stakeholders in a renewable energy system

Testing of the approach of transforming renewable energy to methane by using electrolysis and storage in the same underground infrastructure ²¹

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	4.6 M€	https://www.underground-sun-storage.at/en	Austria	RAG

	Types of technologies and services tackled	Partners	Countries involved
	STORAGE & POWER-TO-X	7	1
KER	Seasonal balancing (storage) of Renewable Energy	Underground Methanation	
Ÿ	To make Hydrogen via electrolysis out of renewable energy by using the Power to Gas process	Transformation of renewable energy to methane (natural gas) using the same infrastructure for conversion and storage	
	Feasibility of an energy system based on a high share of renewables	Establishment of a sustainable consumed in the process of tran	

²¹ The follow-up of this project is the UNDERGROUND SUN.CONVERSION project: Production of natural gas directly within a gas reservoir using a microbiological process with storage it in the same reservoir (see https://www.underground-sun-conversion.at/en).

Croatia

SIREN

Smart Integration of RENewables

Assessment of Croatia's transmission and generation adequacy in order to determine the flexibility requirements at different operating states of the system. Investigation of the benefits of energy storage units in transmission systems

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2018	0.3 M€	http://siren.fer.hr/en/siren	Croatia	FER UNIZG
Types of technologies and services tackled		Partners	Countries involved	

	GRI	STORAGE & POWER-TO-X		3	1
KER	New Operating Procedures	New Investment Strategies	Requirements for Connection of new Wind Power Plants	Services provided by storage	Rules on Storage Operation
Ÿ	New operating procedures considering the volatility and uncertainty of the wind	Identification of potential locations and capacitiy of storage in the Croatian transmission expansion model	Imbalance penalty system to be impelmented within the Renewable energy act	Definition of battery services to support non-dispatchable generation	Assessment of the role of the batteries and flywheel in Croatian transmission network
<u></u>	Better assessment of the reserves needed	Comparison of different storage options (large- scale batteries, pumped hydro and CAES technologies)	Higher power system operation security	Financial self- sustainability of batteries	Arbitrage, frequency regulation, ramping, congestion relief, voltage support, transient stability
	Croatian energy system	Croatian energy system	Croatian energy system	Croatian energy system	Croatian energy system

UGRIP

MicroGRId Positioning

Development of a full-scale microgrid that consists of distributed generators, both renewable and controllable, storage units and flexible loads. A structure of the local, distribution-level market will be defined and demonstrated

Years Project total cost		•	Website	Coordinator's country	Coordinator
2016	6-2019	1.1 M€	http://www.ugrip.eu/	Croatia	FER-UNIZG
	Types of technologies and services tackled			Partners	Countries involved
	CONSUMERS GRID STORAGE & POWER GENERATION MARKET			6	3
KER Development of a microgrid		Standardized communication protocols	optimization f	Market design scheme or the distribution level markets	

KER	Development of a microgrid	Standardized communication protocols	Microgrid operation optimization	Market design scheme for the distribution level markets
Ÿ	Microgrid scenarios will be specified and simulated Test cases run in the FER-UNIZGs' laboratory in order to advance from simulation to real operation	Development and definition of standardized communication protocols between the microgrid elements and the central computer in charge of the microgrid operation, as well as the microgrid and local (distribution level) electricity markets	Centralized EMPC-based controller provides a trajectory of future control inputs satisfying system dynamics and constraints. Robust framework that optimizes the scheduling process (including uncertainty management) of a microgrid while actively participating in electricity markets.	Definition and demonstration of a structure of the local, distribution-level market. Investigation of complex interactions between microgrid, distribution network, wholesale electricity market and local distribution level market: proposition of a viable operation mechanism
	Lab demonstration of the technical feasibility and economic viability of microgrids as means to profit from local clean energy sources. Increase system – wide efficiency, reliability and security and support the	Commercial and technological benefits that will enable the participation of new market players, i.e. aggregators and prosumers in the future flexibility markets	Minimization of the microgrid operational costs. Policies that will reduce energy consumption Improvement of energy efficiency	

	transition towards low – carbon energy systems			
P	Small consumers	Communities, industry and society in general	End-users	

End-users

Cyprus

CYPRUS RESGRID

CYPRUS RESGRID

Technical assistance for assessing the current state of the transmission and distribution electricity systems and proposing optimum solutions for increasing the amount of Renewable Energy Sources generation that can be fed in the electricity system of the Republic of Cyprus

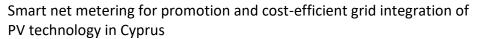
Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2016	0.4 M€	N.A.	Cyprus	JRC/European Commission

Types of technologies and services tackled **Partners Countries involved**

10

KER

Market analysis model


Support the Government of Cyprus to establish a comprehensive medium- to long-term policy for the optimum penetration of renewable energy in the electricity system until 2030 Cheaper, more secure, more environmental friendly energy

Government of Cyprus (Ministry of Energy)

SMARTPV

Investigation of pilot net metering schemes for cost-effective PV implementation and higher grid penetration of distributed generation in Cyprus

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	1.2 M€	http://www.smartpvproject.eu/	Cyprus	University of Cyprus

Partners Countries involved Types of technologies and services tackled POWER MARKET 5 1

KER	Policy Recommendation	Web application	Time of Use tariff application
Ÿ	Promotion of smart net-metering, pointing the way towards a more economically and environmentally sustainable electricity grid	Capability of electricity consumers to monitor their energy profiles in real time and compare them with historical energy data	Optimisation of time-varying electricity pricing, allowing to postpone build-up of additional capacity and thus contributing to efficient utilisation of existing production capacity
	Increase of self-consumption levels (39.5% of total consumption)	Residential peak consumption reduction (up to -3.19%) and energy conservation (-2,17%)	Reduction of residential peak energy consumption (-3.19%, 1.03% and 1.4% for the summer, middle and winter season, respectively)
(P)	Energy stakeholders (local authorities, network operators, prosumers)	Utilities, consumers	Consumers, prosumers, utilities

STORES

Promotion of higher penetration of distributed PV through storage for all

Boosting PV self-consumption in the MED region through an optimal residential storage solution. Testing of coupled solutions for the consumer in different pilot sites taking into account local parameters for optimization and using efficiency measures

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	1.2 M€	https://stores.interreg- med.eu/	Cyprus	FOSS Research Centre for Sustainable Energy

Partners Countries involved Types of technologies and services tackled

POWER SENERATION

STORAGE & POWER-TO-X

MARKET

9

5

KER

Policy Recommendation

Pilot Implementation

Development and validation of an improved selfconsumption policy

Introduction of innovative smart policies to promote PV integration. Adoption of smart self-consumption policies to integrate PV and ESS at the residential and social level.

Use of services by five pilot residential consumers, including increased self-consumption, based on PV systems in conjunction with ESS. Possibility to do peak-load shaving by utilizing stored energy Reduction of dependency of residential users on the electricity network. Reduction of CO2 emissions. Implementation of a social ESS in a distribution substation, sharing the same LV feeder with the residential pilots.

Key energy stakeholders (public authorities, policy makers, DSOs, etc.) in participating regions as well as in islands and rural areas throughout the Mediterranean region

End-users in residential households

Czech Republic

SAVR

Automatic voltage regulation and reactive power system

SAVR

1

Voltage control in pilot nodes by reactive power of the connected generators. Demanded voltage is defined by dispatcher or by the OPF. Producers with the SAVR installations support the distribution grid instead of neutral behaviour only

Years	Project total cost	Website	Coordinator's country	Coordinator
Since 2000	N.A.	N.A.	Czech Republic	ČEZ Distribuce and producers

Types of technologies and services tackled **Partners** Countries involved

Increase of DER hosting capacity

KER

U/Q regulation is cost effective solution – in other case DSO would either stop further RES integration or reinforce the grid

Quality of supply. Reduction of grid related costs (avoided grid investments). Loss reduction. Higher RES availability in given place

Customer

PLAN, INNOVATE, ENGAGE,

Denmark

CITIES

Center for IT-Intelligent Energy systems

Addressing the deficiency of the energy system by establishing an integrated research centre covering all aspects of the energy system, including gas, power, district heating/cooling and biomass, and most importantly methods to forecast, control and optimize their interactions through the use of advanced ICT solutions

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2021	10 M€	http://smart-cities-centre.org/	Denmark	Technical University of Denmark
Types of t	echnologies an	d services tackled	Partners C	ountries involved
CONSUMERS	GRID STORAGE & POWER-TO-X	POWER GENERATION MARKET	N.A.	5

POWER-10-X	GENERATION
KER	Smart grids
V	An integrated research centre data intelligent with an integrated energy systems.
	An accelerated path towards a fossil-free society, new products, more flexibility in the energy system.
	The entire energy system stakeholders

ELECTROGAS

ELECTROGAS

Electrogas, the renewable e-storage buffer

Biogenic production of CH₄ from CO₂ in anaerobic digesters (AD), by either ex situ or in situ supply of reducing equivalents which may be added indirectly via addition of H₂ gas produced by electrolysis, or directly via cathodic supply of electrons to microbes

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2019	3.5 M€	http://projects.au.dk/electrogas/	Denmark	Aarhus University

Types of	technologies	and services tackled	Partners	Countries involve
	STORAGE & POWER-TO-X	POWER GENERATION	8	2
	KER	Biometha	nation technology	
	Ÿ	Power to gas (CH4) technolog renewable electricity dominate	,	off in an
	■ 1	Up to 80% more methane fror Either as electricity storage wi price or less than biomethane platform chemicals. Cost effec	th gas to power or a chea) source of CH4 for transp	p (same
	Producers and consumers of		the developed technology	

EL UPGRADED BIOGAS

EL UPGRADED BIOGAS

Demonstration of a 10 Nm3/h biogas upgrading plant using 50 kW Solid Oxide Electrolyzer and catalytic methanation

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	5.3 M€	https://energiforskning.dk/ en/node/7155	Denmark	Haldor Topsøe A/S

Types of technologies and services tackled Partners Countries involved

CONSUMERS STORAGE & POWER GENERATION

MARKET

10

1

KER

Demonstration of integrated Solid Oxide Electrolyzer and catalytic (SOEC) and methanation

Using SOEC to provide hydrogen for catalytic methanation

Increase methane potential from biogas by 60 % by converting renewable electricity and make it storable. Demonstration of high effciency, transient response and durability

Farmers and society as a whole

ENERGY DATA SERVICE

ENERGY DATA SERVICE

Development of third party web-access to energy data

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2017	1.6 M€	N.A.	Denmark	Energinet

Types of technologies and services tackled Partners Countries involved

ONSUMERS

1

1

KER

Web-portal: https://energinet.dk/El/Data-omenergisystemet

Enabler for digitalisation, new business models, new services

Enabler for digitalisation, new business models, new services

Universities, market participants, IT-companies

PLAN. INNOVATE. ENGAGE.

IHSMAG

IHSMAG

Integrating Households in the Smart Grid

Development of a comprehensive design of household smart grid solutions: technologies in households, daily electricity consumption practices of the household members and electrical system administrative and institutional rules that affect the implementation of new smart grid solutions

Years	Project total cost	Website	Coordinator's country	Coordinator
2012-2016	1.1 M€	https://ses.jrc.ec.europa.eu/ih smag	Denmark	Danish Building Research Institute, Aalborg University

Types of technologies and services tackled **Partners** Countries involved STORAGE & CONSUME MARKET 3 Insights into user behaviour and user experiences with DR **KER** solutions Static time-of-use pricing combined with EVs. Improvement of the balancing of renewable energy generation and energy consumption. Participation of households in demand response (load shifting). DSOs and consumers.

Finland

EL-TRAN

Transition to a resource effective and climate neutral electric energy system

EL-TRAN

Resolution of policy problems involved in a transition to a resource efficient, climate neutral electricity system by outlining requirements for Finnish energy policy actors to implement the transition and by defining a roadmap for the public sector to support the process

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2017	3.2 M€	https://el-tran.fi/in-english/	Finland	University of Tampere

Types of technologies and services tackled **Partners** Countries involved

> MARKET 6

Roadmap for a more resource effective and climate neutral electric KER energy system in Finland

Roadmap for the Finnish public sector to support the key actors and stakeholders in the initiated energy transition: tasks for each public-sector actor and suggestions for institutional change and regulation

To attain an optimal balance between costs and benefits Prioritisation among various solutions to improve resource efficiency and climate neutrality.

Society

HEILA

Integrated business platform of distributed energy resources

HEILA

Construction of extensive business development platform, based on the integration of laboratories and simulation environments of the research centre VTT and universities. The platform includes real-life pilots for developing and testing the functions needed in the management of future energy system. One essential target is to build a virtual microgrid

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2018	1 M€	N.A.	Finland	Tampere University of Technology
Types o	Types of technologies and services tackled		Partners	Countries involved
	CONSUMERS GRID	MARKET	N.A.	1
	KER	Developme	nt platform	
	platfo		xchange. Larger scale piloting ent laboratories and pilot sites	
	Cost-effective operation of the future smart grids. Information exchange with a multitude of small-scale resources			
	Comp	anies developing new soluti	ons and research organizations	

VAGE

Improving the value of variable and uncertain power generation in energy systems

VAGE

Improvement of operational decision making in power systems when considering the variability and uncertainty of wind, solar, water inflow, heat and electricity demand, their correlations and possible sources of flexibility, enabling optimisation of storage time scales (up to 10 days) and wind/PV forecasting with uncertainty estimates in different time scales

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2018	1.4 M€	https://clicinnovation.fi/projects/vage -improving-value-variable-uncertain-	Finland	VTT

	power-generation-energy	-5y5terri5/			
Туре	es of technologies and services tackled	Partners	Countries involve		
	CONSUMERS GRID STORAGE & POWER GENERATION	2	1		
KER	Backbone - Open source energy	y systems modelling fr	amework		
Better optimization of interconnected energy systems using high temporal and geographic resolution for high shares of variable generation, storages and demand side representation					
<u> </u>	Increasing the value of variable power generation for society				
	Policy and business decision makers, academic	a			

WIVE

Wireless for Verticals

WIVE

Development of future radio technology and study of its application for verticals by setting up use cases, scenarios and requirements for the technology as well as via testing. Testing and trialing of the technology will happen in test facilities provided by 5G Test Network Finland as well as in the testbeds from the consortium

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2018	4 M€	https://wive.turkuamk.fi/	Finland	Turku University of Applied Sciences

Types of technologies and services tackled Partners Countries involved

KER

Feeder line protection

To experiment and validate what types of existing and forthcoming wireless technologies can be applied for remote monitoring, control, and protection in a realistic environment

Significant CAPEX and OPEX cost savings and better flexility to re-configure monitoring, control, and protection capabilities in medium voltage networks. Better quality of electricity and reduced distribution outages

DSOs, TSOs, Consumers

France

POSTE INTELLIGENT

Development of a 100% digital and optical solution that will enhance the energy and operational performance of the grid as well as its reliability

Years	Project total cost	Website	Coordinator's country	Coordinator	
2012-2018	32 M€	http://www.posteintelligent.com/	France	RTE	

Types of technologies and services tackled Partners Countries involved

CONSUMERS GRID STORAGE & POWER TO X | CEMPERATION | 7 1

KER Digitized substations

A substation which was a power hub will be a data hub Digitization of a TSO

Enhance the energy and operational performance of the grid as well as its reliability

Users and customers

N.A.

SUBZERO

Next Generation Compact Substations

SUBZERO

8

Co-development (RTE and industrial partners) of the next generations of compact HV substations which will be ecodesigned (e.g. SF6-free up to 400kV), digital ready (e.g. NCIT and IEC61850 process-bus) and more flexible for maintenance and operation

Years Project total cost		Website	Coordinator's country	Coordinator	
2018-2024	322 M€	N.A.	France	RTE	

Types of technologies and services tackled **Partners** Countries involved

KER

Ecodesigned compact substation

To provide SF6-free solutions for compact Substations up to 400kV including life-cycle analysis methodologies to assess the complete environmental perfomance of such solutions.

Lower the impact of the substations assets on the environment and reduce the life-cycle cost and outages caused by those assets.

Overall society and customer.

Germany

ADELE

Adiabatic Compressed-Air Energy Storage for Electricity Supply

ADELE

Development of Compressed Air Energy Storage (ACAES) for electricity storage

Years	Project total cost	Website	Coordinator's country	Coordinator
2013- 2017	0.8 M€	https://www.rwe.com/web/cms/mediablob/en/391748/data/3	Germany	RWE/DLR

Types of technologies and services tackled **Partners Countries involved**

1

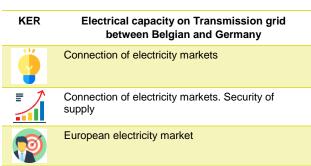
KER

Adiabatic Compressed Air Energy Storage

Improved grid integration of renewable energy.

Transition towards CO2-neutral energy generation, grid stability, avoided curtailment of RES.

Utilities, grid operators, power plant operators.


ALEGRO

ALEGRO

Aachen Liege Electricity Grid Overlay

320-kVDC-Connection between Belgian and German Electrical Transmission Grid aiming at carrying around 1,000 megawatts. The power line will use high-voltage direct-current (HVDC) transmission technology and will be installed as an underground cable

Years	Project total Website		Coordinator's country	Coordinator	
2009-2021	2009-2021 500 M€ https://www.amprion.net/Grid- expansion/Our-Projects/ALEGrO/		Germany	Amprion	
Types of technologies and services tackled			Partners Co	ountries involved	
GRID		N.A.	2		

AMPACITY

Ampacity - 10 kV superconductor system for high-power electricity links

AMPACITY

Proof of the technical suitability of superconducting technologies in distribution grids; evaluation of the investment for a 10-kV cable in combination with a superconducting fault current limiter as an alternative to a 110-kV cable system

Years Project tota		Project total cost	Website Coordinator's country		Coordinator	
2011-2016		13.5 M€	N.A.	Germany	Innogy SE	

Types of technologies and services tackled

Types of technologies and services tackled

Fartners

Countries involved

N.A.

Germany

Innogy SE

N.A.

Guidelines: "Implementation and specification of the cable system"

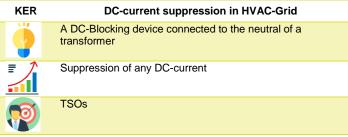
Proof of the technical suitability of superconducting

Proof of the technical suitability of superconducting technologies

Open source result

DSO

DC-BLOCKING DEVICE


DC BLOCKING DEVICE

Test installation of DC-Blocking device prototype, connected to the neutral of a transformer to suppress any DC-current

Years	Project total cost	Website	Coordinator's country	Coordinator	
2016-2019 N.A.		N.A.	Germany	Amprion	

Types of technologies and services tackled Partners Countries involved

N.A. 1

FLEXITES

Kraftwerksflexibilisierung durch Thermische Energiespeicher

FLEXITES

Operational flexibilisation of coal-fired steam power plants through integration of heat storage

Years	Project total cost	Website	Coordinator's country	Coordinator		
2017-2019	3.5 M€	N.A.	Germany	German Aerospace Center (DLR)		
Types of technologies and services ta		services tackled	Partners	Countries involved		
STORAGE & POWER GENERATION MARKET			N.A.	1		
KER	KER Flexible steam power plants Flexibilisation of coal-fired steam power plants through integration of heat storage		Improved heat storage technologies			
				ature heat storage technology and for industrial process heat.		
Transition technology offering contribution to grid stability and preventing curtailment of RE. Integration of Renewable Energy Source on the grid. Utilities, power plant operators		ng curtailment of RE. Integration	Improved utilisation of RE	E in the energy system.		
		Supplier of heat storage t	echnology			

INTEGRATED IT-SYSTEMS

INTEGRATED IT-**SYSTEMS**

Building up a platform to easily connect the existing and new IT-Systems in a standardized way

Years	Project total cost Website 18 1 M€ N.A.			Coordinator's country	e Coordinator's country	
2017-2018				Germany		Amprion GmbH
Types of technologies and services tackle				Partners		Countries involved
	Infrastructure with standardized ways to develop, deploy and operate an integrated internal IT-landscape Technical support of a single-point-of-truth perspective and raise of data quality Develop to when new the stand data Connectic systems to Common used by coningh quality			N.A.		1
KER			•	entation of a CIM based terprise Data Model		Integration of a CIM-Cache
Ÿ			hen new ne standa	he CIM based Data Model v requirements arise using ardized Data Model for grid	mos deve a ful	dard software product covering t of the needed functionality and elopment of an interface to reach I support in the existing structure
			ystems to common sed by d	on of the data in new o the legacy data silos. understanding of the data ifferent systems leading to ty		dardized way of storing the data eving high data quality
			s and data providers		r of the exchanged data and quality managers	

KRYOLENS

Kryogene Luftenergiespeicherung (Cryogenic air energy storage)

KRYOLENS

Increase of the technology readiness level of the bulk energy storage technology of Liquid Air Energy Storage (LAES) by process and component optimisation and determination of the techno-economic potential

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	2.8 M€	N.A.	Germany	Linde AG

Types of technologies and services tackled **Partners Countries involved**

6

1

KER

LAES technology development and economic assessment

Increase the TRL of LAES technology, thus contributing to meet the need for large-scale energy storage

Availability of large-scale energy storage combining proven technology with scalability and site independence

Utilities, equipment manufacturers

KWK FLEX

Years

Highly flexible Combined Heat and Power by Thermal Energy Storage and "Power-to-Heat"

Project total

cost

Coordinator

Thermal load prediction and flexible generation and dispatch of combined heat and power for district heating

Coordinator's country

Website

2016-201	0.3 M€	N.A.		Germany		Kempten University of Applied Sciences
Types	of technologies and	services tackled	d Partners		C	ountries involved
STORAGE & POWER GENERATION MARKET				2		1
KER Advanced thermal load prediction		Advanced o	lispatch optimisation tool		onary power plant and gy storage simulation models	
Ÿ	On-site advanced the prediction in district using machine-learn technologies, in part on "deep learning".	heating grids, ing	generation u	spatch of thermal nits and thermal ge in district heating systems	dynamic	d insight into plant s of thermal generation gy storage units
	Reduced emissions and cost by optimized plant dispatch according to required thermal loads.		Reduced use of fossil fuels (i.e. Reduced fuel consumptio and wear of components transient operation		r of components during	
District heating and cooling system operators.		•	rator of thermal generation units and thermal energy storaget heating and cooling.		mal energy storage for	

STENSEA

Stored Energy in the Sea

STENSEA

Development and testing of a novel pumped storage concept for storing large amounts of electrical energy offshore in combination with offshore wind farms: use of the sea itself as upper storage reservoir and a hollow sphere on the seabed as the lower storage reservoir

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	N.A.	https://www.iee.fraunhofer.de/en/ research_projects/search/2017/ stensea.html	Germany	Fraunhofer IEE
Types of technologies and services tackled		Partners	Countries involved	
STORAGE & POWER GENERATION			3	1

KER	Feasibility proved	Full-Scale concept developed		
	To add a valuable storage option (demonstrated in a relevant environment) to the future energy system as well as to Europe's storage portfolio.	Availability of a concept of a full scale system and logistics, based on results from model experiment, thus making a good exploitation possible. Results partly published.		
<u></u>	The technology can store energy for around 2€cent/kWh, without severe geological impact compared to conventional pumped hydro storage plants.	High impact of results (partly published) in public, thus raising a high interest of possible users, companies and public.		
	European energy system stakeholders.	Public, Research, Policy makers.		

SWARMGRID

Safe operation of electric grids with swarmenabled system services

SWARMGRID

Simulation and contribution of decentralized system units "swarm" to system stability

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2018	4.2 M€	http://www.acs.eonerc.rwth- aachen.de/cms/E-ON-ERC- ACS/Forschung/Forschungsprojekte/ Gruppe-Large-Software-System- Challenges/~lrin/SwarmGrid/?lidx=1	Germany	RWTH Aachen - Institute for High Voltage Technology

Types	of technolog	es and services tackled	Partners	Countries involved
CONSUMERS GRID MARKET			4	1
	KER	Secured system	operation approaches	
	Ÿ	To develop approaches for the se systems.	ecure operation of the electrica	l energy
		Stablity and security of the whole	e system.	
		All participants of the electrical e	nergy system.	

VARIABLE SHUNT REACTOR

VARIABLE SHUNT REACTOR

Enhancement of voltage control in the 400kV-Grid due to the large regulation range of the shunt reactor (50 to 250MVAr)

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	4 M€	N.A.	Germany	Amprion

Types of technologies and services tackled

N.A.

I

KER

Enhanced voltage control in the 400kV-Grid

Wide regulation range of the shunt reactor (50 to 250MVAr) in combination with a tap changer designed for max. 300.000 switching operations.

Improved voltage control.

TSOs.

Hungary

SMART SYNERGY

SMART SYNERGY

Measuring the impact of smart meters on consumers

Analysis of Smart Meter rollout solutions, obstacles and technological needs from a DSO point of view, and in particular of the attitude of consumers, the technological possibilities of multi-utility smart metering, possible business models and data security & protection aspects

Years	Project total cost	Website	Coordinator's country	Coordinator
2012-2013	N.A.	https://www.interregeurope.eu/ policylearning/good- practices/item /915/smart-synergy-project/	Hungary	DÉMÁSZ

Types of technologies and services tackled

Partners

Countries involved

CONSUMERS

KER

Conclusions of the analysis of smart meter rollout solutions, obstacles and technological needs from a DSO point of view

Definition of the best available and most cost efficient technological solutions for multiutility smart metering (in terms of metering, data transmission and data registering). Demonstration of not relevant resistance of consumers.

Successful smart meter data reading implemented by GSM (97-99%) and by PLC (96-98%).

TSOs, DSOs, Government, Consumers.

Ireland

DLR

DLR

Dynamic Line Ratings

Four-year trial of dynamic line rating technology on selected 220kV and 110kV feeders in the Irish system. This trial will include collaboration with the asset owner to ensure the overall least cost solution is found

Years	Project total cost	Website	Coordinator's country	Coordinator
2018-2022	0.5 M€	N.A.	Ireland	EirGrid

Types of technologies and services tackled Partners Countries involved

GRID

N.A.

1

KER

Results of Trial Dynamic Line Ratings Deployment

Increase utilization of existing assets at minimal cost. Relaxing operational limits with limited impact on security.

Relieving congestion and reduce capital and operational expenditure through increased utilization of true asset capacity

Customers

DS₃

DS₃

Delivering a Secure Sustainable System

Ensuring that the power system can securely be operated with increasing amounts of variable non-synchronous renewable generation over the coming years

Years	Project total cost	Website	Coordinator's country	Coordinator
2011-2020	N.A.	http://www.eirgridgroup.com/how- the-grid-works/ds3-programme/	Ireland and Northern Ireland	EirGrid and SONI

	Types of technologies	and services tackled	Partners	Countries involved	
	CONSUMERS GRID STORAGE & POWER GENERATION MARKET		3	2	
KER	Wind Security Assessment Tool (WSAT)	New System Services for managing high renewable penetration	New control room tools	Enhanced performance monitoring	
Ö	Real time assessment of transient and voltage stability.	New service products: synchronous inertial response, fast frequency response, fast post fault power recovery, dynamic/steady state reactive reserve and ramping.	Monitoring of renewable penetration, inertia and RoCoF; 24 hours look ahead calculation of ramping requirements, forecast of the voltage profile and stability forecasting with an enhanced WSAT.	Standardisation and documentation of existing processes on an all-island basis.	
	More renewable generation in Ireland and Northern Ireland and reduce carbon emissions: from 60% to 65%; lower costs.	Expected production cost saving of €300m by 2020 realized by allowing the system to operate with up to 75% renewable generation. Continuing increase of SNSP to 75% by 2020.	Extract the full benefit from renewable generation and avoid increasingly widespread curtailment.	Flag non-compliances, so that generating units can remedy these issues, submit derogations or revise their contracted values.	
(SO)	Customer.	Customer.	User, Customer.	TSO, Customer.	

POWER OFF AND SAVE

POWER OFF AND SAVE

Save money by better managing your electricity use

Rewarding customers who agree to reduce their energy use when electricity demand is high

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	0.3 M€	http://www.eirgridgroup.c om/how-the-grid- works/power-off-save/	Ireland	EirGrid

Types of technologies and services tackled Partners Countries involved

CONSUMERS

2

1

KER Availability, response time and volume of domestic demand response

= 1

Assessment of the possibility to get Demand Response technologies into the homes, including consumer behaviour aspects

Provision of flexibility to power systems allowing for a greater penetration of intermittent energy supply

· Single Control of the control of t

TSOs, Consumers

POWER LINE GUARDIAN / TOWER ROUTER

POWER LINE GUARDIAN / TOWER ROUTER

Demonstration of a tower router from SmartWires expanding on the capabilities of the technology of the distributed power flow controller "Power Guardian®", also from SmartWires. This device can increase or decrease a line's reactance to electrical power flow in real time, permitting greater use of existing transmission capacity

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2019	0.3 M€	N.A.	Ireland	EirGrid

Types of technologies and services tackled

Results of Trial Power Flow Controller Deployment

Managing power flows on constrained boundaries to ensure utilization of parallel assets and avoid building new assets

Reduce costs and impact on customer/environment.
Reduce capital and operational expenditure for customer

Customer

Customer

SCHWUNGRAD RHODE HYBRID TEST FACILITY

SCHWUNGRAD RHODE HYBRID TEST FACILITY

Development and implementation of an operational testing of a flywheel energy storage plant (4 x 150 kW units) connected to the 110kV electrical grid to demonstrate the provision of fast acting stabilisation system services required by the Transmission System Operator, Eirgrid. Schwungrad will also integrate battery technology to produce an innovative hybrid system, connected to the electrical grid to provide further system services

Years	Years Project total Website		Coordinator's country	Coordinator
2014-2017	2.75 M€	N.A.	Ireland	Schwungrad Energie

Types of technologies and services tackled

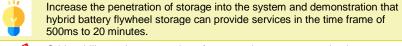
Partners

Countries involved

N.A.

Schwungrad Energie

N.A.


N.A.

Storage & Power To X

KER

Trial Results for Hybrid Flywheel/Battery Storage

That Results for Hybrid Flywheel/battery Storag

Grid stability as the penetration of non-synchronous generation increases.

Flywheel/battery hybrid users. Customer.

Italy

ADVANCE DISPATCHING & LFOR

Advance Dispatching and real-time forecasts of active&reactive load

ADVANCE DISPATCHING & LFOR

A real-time software currently in use in the National Dispatching Control Room of Terna (Italian TSO). Its main goal is to define and propose the best dispatch of all the power-generating modules qualified for the Italian ancillary services market

Years Project total cost		Website	Coordinator's country	Coordinator
N.A.	N.A.	N.A.	Italy	Terna

Types of technologies and services tackled

Partners

Countries involved

GRID MARKET

N.A.

1

KER

Advance Dispatching and real time load forecast, LFOR Platform

Advanced algorithms for linear programming, adopting mixed-integer variables (MILP)

LFOR Platform applicable, with high performances, for the active power net load forecast and nodal active or reactive power forecasts.

Strengthen system operation and increase security of supply for final customers; Reduction of system costs for balancing; Improvement of both load forecast accuracy and system security

All power system users

LIVING GRID

LIVING GRID

Development of new models for the enhancement of the system observability and the optimal management in emergency conditions of: the National Transmission Network (NTN), the disconnection and reconnection of portions within the network and of the related DER, contributing to overcome the traditional "load shedding" concept, and the distributed generation curtailment

Years	Years Project total cost		Coordinator's country	Coordinator
2018-2020	1 M€	N.A.	Italy	ENEA

Types of technologies and services tackled

Partners

Countries involved

CONSUMERS

GRID

STORAGE & MARKET

N.A.

1

KER

Grid observability & controllability

Enhancement of the observability and of the forecasting capacities of available resources finalized to their optimal management. Increase of the automation and control both on HV and MV networks, and on the interface between the networks of medium and high/extra high voltage, in an increasingly integrated approach.

Safety and reliability of networks in the presence of DER (generation and loads). Higher quality of service levels, monitoring capabilities, observability and controllability. Otimizing the use of the transport network capacity. Reduction of CO2 emissions and environmental impact.

TSOs and DSOs.

STORAGE LAB

STORAGE LAB

Field testing of power-intensive Electrochemical Storage Systems (ESSs) installed in the main Italian islands of Sardinia and Sicily and connected to the national transmission grid for the provision of system services (e.g. primary and secondary frequency response, black start)

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2018	50 M€	https://www.terna.it/en- gb/sistemaelettrico/ progettipilotadiaccumulo.aspx	Italy	TERNA

Partners Countries involved Types of technologies and services tackled

MARKET

5

KER Regulation services

To allow to identify the best storage technologies and their key findings in order to set specific services to be provided from this kind of systems for TSO applications and ancillary services market.

To allow to spread the key findings of the project and make people interested in storage systems more aware of pros and cons of each technology and of advantages for the electric system.

Know-how sharing

Exploitation of storage for providing grid services to TSO. Increase of grid security. CO₂ reduction: 337 tons/year.

Publication of project reports and public workshops for presenting results of experimentation.

Society, private investors (in storage technologies).

Society, investors, TSOs.

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM

SMART NETWORKS FOR **ENERGY** TRANSITION

Latvia

ITCITY

An ICT platform for sustainable energy ecosystem in smart Cities

Response to the citizens' needs for new information technologies applications of various energy technologies usage, integrated in an intelligent way within Platform area at City level

Years	Years Project total cost 2017-2020 0.6 M€		Website	Coordinator's country	Coordinator
2017-20			http://fei-web.lv/en/itcity	Latvia	Institute of Physical Energetic (IPE)
	Types	of technologies and s	ervices tackled	Partners	Countries involved
		CONSUMERS		7	5
Electricity consumption web-based platform for smart cities			Methodology for municipalities in transition to Smart	A framework based on a mobile application for	Simulation for communication solutions in Wireless

KER	web-based platform for smart cities	municipalities in transition to Smart Cities	on a mobile application for smartphones	communication solutions in Wireless Sensor Networks (WSN)
Ÿ	Use of instrumentation values available in smart meters, with high time granularity for the measurement of rms values for voltages and currents, active and reactive powers, energy, dynamic tariffs, time of use etc. to derive load profiles for typical households in Smart Cities.	Specification of the techniques to characterize the methodology for Smart Cities services for energy (intelligent planning, design and operation of urban energy networks, including renewables and smart grids technologies integration).	To engage people to contribute to smart cities, focusing on reducing energy consumption by changing consumption behaviors in daily life.	To determine the scope and new frontiers of wireless sensor networks, in order to feed different systems distributed throughout the city, mainly working on the internet of things (IoT) and MachinetoMachine (M2M).
	Contribution to city energy ecosystem, improvement of city services and quality of life at national and transnational level. More efficient planning of the grid operation.	Raise the level of development of all main structures of the city, from awareness of the inhabitants to the introduction of progressive technologies.	Impact on future endeavours towards smart cities, reduction of energy consumption.	To efficiently manage the energy in homes, neighborhoods and metropolitan urban areas.

End users of electrical energy, mainly in households from Smart Cities. DSOs and ESCOs. Citizens, municipality, merchants, research institutions.

End users.

End-users.

Lithuania

DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION

VIDIŠKIAI DIGITALIZATION

Implementation of Vidiškiai 110 kV transformer substation (TS) as the first digital substation in the grid. New generation Robotic Process Automation (RPA) equipment manufactured under IEC 61850 which ensure interoperability in the horizontal communication within the optical data network was introduced

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2016	0.6 M€	N.A.	Lithuania	Litgrid

Types	of technologi	es and services tackled	Partners	Coun	tries involved
		GRID	N.A.		1
	KER	Digitalisation	on of the network		
		Full digitalisation in transmissior control and ully redundant comn		mation and	
		 80% cost of cables, - 50% time modification, 100% noise resista 		design	•
	· ·	TSO			

Netherlands

CO-RISE

Community innovation for sustainable energy: Aligning social and technological innovation

CO-RISE

Alignment of social and technical innovation through investigating the innovative potential of local energy initiatives in terms of technology, social embeddedness and normativity as well as researching the innovative potential of emerging sustainable energy technologies, including their social and normative dimensions

Years Project total cost Website		Coordinator's country	Coordinator	
2016-2020	0.5 M€	N.A.	The Netherlands	University of Gronigen

Types of te	echnologies and services tackled	Partners	Countries involved
CONSUMERS	GRID STORAGE & POWER GENERATION MARKET	N.A.	1
KER	Set up of local ener	gy co-operatives	
Ÿ	Community acceptance, local energy soluti	ons.	
	The energy costs for local communities car through local management of energy system system.		
1	Local energy communities		

DYNAMO

DYNAMO

Define possible business models for Smart Meter system

Customer, Balance Responsible Party

BRP, aggregator, TSO and DSO

Definition of possible business models for Smart Meter systems, in order to start a distributed Flexibility market based on USEF (Universal Smart Energy Framework)-standardized market rules and to enable cooperation between aggregators, DSO and other market parties

Years		Project total cost	Website	Coordinator's country	'	Coordinator
NA		3 M€	N.A.	The Netherlands		Alliander
Тур	es of te	chnologies and ser	vices tackled	Partners	Count	ries involved
	CONSUMERS GRID MARKET			N.A.		1
	KER	Flexibility m	arket model	Management of flexibility by	y a DSO	
	Ÿ	Promoting demar by market players standardized way	•	Smart Grid management daily grid management	, digitization of	
_	I	New market for a	00 0	Reduce grid investments		

DSO, customer, aggregator

Norway

CEDREN HYDROBALANCE

Large-scale balancing and energy storage from Norwegian hydro power

CEDREN HYDROBALANCE

Potential future uses of hydropower flexibility and storage up to the year 2050: Economic opportunities, environmental impacts, mitigation of new operational regimes in reservoirs, challenges in terms of regulatory framework, policy, public acceptance

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	2.6 M€	http://www.cedren.no/english /Projects/HydroBalance	Norway	SINTEF Energi

	Types of technologies and services	s tackled Part	ners	Countries involved
	GRID STORAGE & POWER-TO-X MARKET	N.	A.	1
KER	Flexibility and energy storage needs in the transistion	Investment tool for pumped-st and hydro in a multimarket se	_	Environmental assesment of hydro reservoirs
V	Method for calculation of detailed future wind and solar output - for operation and energy system planning	Prototype for estimation of revenu from additional pumped-storage for investment and operation purpose	or	Methodology for assessing environmental and economic consequences of pumped- storage between reservoirs
	Support the transition towards emmision free electricity sector	Improve investement decisions fo tecnology for flexibility (Hydro Pov helpful in revisions of hydropower regulation, New advances in methodology for planning and Investment	ver),	Contribution to the dicussion regarding how to use and expand hydropower as energy storage
	Government. Regulators. Operators. Consultancy	Power Companies and service pro	oviders	Policy makers and the Hydro Power industry

CINELDI

Centre for intelligent electricity distribution to empower the future smart grid

Enabling a cost-efficient implementation of the future flexible and robust electricity distribution grid. This will pave the ground for increased distributed generation from renewable resources, electrification of transport, and more efficient energy use

Yea	ars	Project total cost	Websit	te	Coo	ordinator's country	Coordinator	
2016-	-2024	40 M€		https://www.sintef.no/projectwe b/cineldi/		Norway	SINTEF Energi AS	
Types of technologic			ies and services tac	kled		Partners	Countries involved	
CONSUMERS GRID S P			TORAGE & POWER GENERATION MARK	KET		29	1	
KER	Decision support for planning and asset management		New concepts Cost effective and solutions for integration of smart operations flexible resources		Microgrid concepts, technologies and solutions	Roadmap for the transition to the future distribution system		
Ÿ	method tools fo optimal and ass manage	ologies and r the planning set ement of the listribution	New cost-effective concepts and solutions for smart operations based on new emerging control and monitoring technologies and extensive real time monitoring	Methods and models for or effective integration of flexible resor in smart distribution g including bus models on he utilize this fle	rids, siness ow to	Microgrid concepts, technologies and solutions for optimal design, operation, and integration with the distribution system. Technologies and solutions for micro grids, self-contained electricity system	Develop a credible set of Smart Grid visions and scenarios, guidelines and recommendations for the transition to the future flexible, robust, and cost-efficient electricity distribution system by integrating the results and findings from the other KER into a holistic strategy	
	through utilisation existing infrastrumore to oriented investme better or risks. R grid tari increas of Distri renewa general efficient energy strength	better on of and new acture, arget- d annother of eduction of effs, e of share ble ble tion, more t Power and use,	More flexible operation of the distribution grid, contributing to cost reductions, enhanced energy efficiency and improved system reliability and security, as well as standardised solutions. Better Control of cyber risks	Market soluti for flexibility, securing elec supply, incre utilisation of grid, flexibility alternative to investments. Improved interaction D TSO to bene total power especially by enabling DE flexibility to a levels	etricity ased the y as grid SO- fit the ystem,	Better Control of Security of electricity supply, integration of DER, strengthened Research institutes. Contribution to cost-efficient and robust integration of microgrids with the distribution grid	Strategy for the future electricity distribution system, regarding grid Investments, smarter operation, utilisation of flexible Resources and microgrids. Opportunities for the future distribution system	
		oroducers, ers, e	Grid companies, power producers, end-users, ICT and technology providers	Grid compan TSO, end-us		Grid companies, power producers, end-users, technology providers	Grid companies, end- users, power producers, technology and ICT providers	

Partners

OTHER PROJECTS

FASAD

Fault and interruption handling in smart distribution systems

FASAD

Investigation on how smartgrid technology can be utilized in the electric distribution grid to reduce interruptions in the electricity supply as well as the socio-economic costs of interruptions

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2017	N.A.	https://www.sintef.no/en/pro jects/fault-and-interruption- handling-in-smart-distribut/	Norway	Sintef Energi AS

RIA.

KER Smart fault and interruption handling

Utilisation of fault current sensors connected to the Control system, in

combination with remotely controlled disconnectors.

Improved work processes and faster restoration of electricity supply. More efficient handling of faults and interruptions, reduced costs of interruptions, improved system solutions before scaling up.

Grid companies and end-users.

Types of technologies and services tackled

FLEXNETT

Flexibility in the future smart distribution grid

Countries involved

Increase of the future smart grid distribution flexibility in a cost effective, sustainable and reliable way. This will be done by demonstrating and verifying technical flexibility solutions in the market on different grid levels to identify the effect of solar production on flexibility

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2017	2.2 M€	https://hafenstrom.com/ne w-project-flexnett/	Norway	BKK Nett

Types of technologies and services tackled Partners Countries involved

17 **Battery for postponement** Self-healing Sun map for **KER** technology of grid investment customers Battery installed at a Implementation of Demonstration of the prosumer contributes to technology for selfbenefit from solar voltage support as an healing in the panels. distribution grid. alternative to new cable. Increased self-Postponement of grid Reduced outages for investment. the customers. consumption for the customers. DSO and customers. Customers. Customers.

MODFLEX

Modelling Flexible resources in the distribution grid

MODFLEX

Development of dynamic models representing the consumption and production profiles for different flexible resources in the smart distribution grid. The Project will address how such resources can be utilized to increase the flexibility in the grid - without introducing new peak load hours due to the rebound effect

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	1.6 M€	https://www.sintef.no/en/projects/modelling- flexible-resources-in-smart-distribution/	Norway	SINTEF Energi

Types of technologies and services tackled

Partners

Countries involved

CONSUMERS

N.A.

1

KER

Modelling flexible resources

To describe high resolution consumption profiles for different new types of electricity units (load, DG and storage), including potential for flexibility and possible rebound effect, and identify how Photovoltaic (PV), EV, instant water heaters and other demanding loads affect the distribution grid with and without the use of demand response and storage

Evaluation of how flexible resources can be an alternative to grid Investments. Software improvement for grid planning

DSO

STRONGRID

Smart Transmission Grids Operation and Control

Development of knowledge and solutions to improve security and efficiency in operation and control of the next generation electric power systems

Years	Project total cost	Website	Coordinator's country	Coordinator
2011-2015	24 M€	https://ses.jrc.ec.europa.eu/stro ngrid	Norway	Norwegian University of Science and Technology

GRID

Types of technologies and services tackled

12

Partners

7

Countries involved

KER

Applications of PMU measurements in power system operation

Improved situational awareness and understanding among power system operators of dynamic performance and stability issues

Better utilization of the power grid without jeopardizing power system security

End user

Portugal

GRACIOSA

Renewable Generation with Intelligent Storage and Consumption to Operate Distribution Networks with Auto-consumption Systems

GRACIOSA

Intelligent power controls and purpose-built Energy Management System combined with a battery storage system, a wind park and a photovoltaic power plant. The system allows to power the island by wind and solar energy with the existing diesel needed only for back-up power during prolonged periods of unfavorable weather

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	24 M€	https://www.younicos.com/case -studies/graciosa/	Portugal	Younicos

Types of technologies and services tackled

Types of technologies and services tackled

Fartners

Countries involved

A

Integrate different power units without disturbing the stability of the grid.

Use endogenous resources such as wind and sun.

About 2/3 of annual consumption will be provided through renewables energy.

Customers.

SINAPSE

Near Real-Time Outage Detection With Spatio-Temporal Event Correlation

SINAPSE

Platform to improve the visibility over the low voltage grid, making available an automatic communication channel for low voltage anomalies, with internal and external sources of data, adding intelligence to the distribution grid

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	0.06 M€	https://www.edp.com/en/stor ies/sinapse	Portugal	EDP Inovação/ EDP Distribuição

Types of technologies and services tackled Partners Countries involved

2

KER Real-time external events correlation

Sinapse leverages on real-time signals (events) from external stakeholders such as telecom operators and other industrial players to correlate events and detect grid outages in real-time Shortened operational reaction times and increased quality of service

Consumers (both business and residential)

Slovenia

NEDO PROJECT NEDO

Study of the technological possibilities of multi-utility smart metering (partnership with the Japanese agency NEDO)

Years	Project total cost	Website	Coordinator's country	Coordinator	
2016-2019	19 35 M€ https://www.eles.si		Slovenia	ELES	
Types of technologies and services tackled			Partners C	ountries involved	

Types of technologies and services tackled			Partners	Countries involved
	CONSUMERS GRID STORAGE & POWER-TO-X	POWER GENERATION MARKET	3	2
KER	Increased supply of tertiary frequency control with advanced services	Increased supply of secondary reserves using environmentally friendly technologies	Increased reliability of supply to grid users	Involving small consumers (households, small businesses) in ancillary services
Ÿ	Increasing competitiveness of tertiary reserve supply.	Provision of Secondary Frequency Control by Energy Storage Systems.	Real-life operation of advanced DMS (Distribution Management System) functionalities.	Involving consumers on a very low-cost principle in actively participating in electricity markets and system services.
<u> </u>	Very low-cost ancillary service.	Demonstration of the feasibility of storage.	50% higher reliability of electricity supply and 50% higher reliability of the provision of services to the TSO from lowervoltage levels.	20 % reduction of consumption in peak hours.
	TSOs, grid users.	TSOs, grid users.	Grid users.	DSOs, TSOs.

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

SINCRO.GRID

Implementation of the SINCRO.GRID PCI - Phase 1

Solving network voltage, frequency control and congestion issues enabling further deployment of renewables and displacement of conventional generation by integrating new active elements of transmission and distribution grids into the virtual cross-border control centre based on advanced data management

Years	Project total cost	Website	Coordinator's country	Coordinator	
2016-2021	88.5 M€	https://www.sincrogrid.eu/en/	Slovenia	ELES d.o.o.	
Types of technologies and services tackled Partners Countries involved					

	Types of technologies and services tackled	Partners	Countries involved
	CONSUMERS STORAGE & POWER-TO-X MARKET	N.A.	1
KER	Real-Time voltage control for optimization at no international level between TSOs and D		Flexibility of Active power. Increased supply of ancillary services.
	Higher potential penetration of renewables. Solved issue profiles. Relieved shortage of ancillary services (seconda Improved system balancing performance in the control bl Better utilization of existing transmission grid using the D Better observability of distribution and transmission grids forecasting tools, DTR and information. Additional tertiary reserve provided by the DSM by estab communication platform.	nry reserve). ock area. TR system. using advanced	Provision in a secure manner and impact on a wider- regional level.
	Higher social welfare for society, increased competition, lemissions, new research findings. Increasing the system Increasing network capacities.		Reduction of CO2 emissions. Better grid utilization. Enable a larger proportion of RES.
5	Customers, TSOs, DSOs, aggregators		TSOs and grid users

KER	Flexibility of Reactive power	Dynamic thermal rating of power lines	Virtual cross-border control centre.
Ÿ	Installation of compensation devices for reactive power control	Reducing the construction of new transmission lines.	Support remote control of new devices (SVC/STATCOM/VSR, Storage, Wind farms)
	Preventing voltage breakdown or network element failure.	Increased utilization of the grid, increased maximum thermal capacity and increased system realiabitlity, facilitating system control in case of extreme operational conditions, deferred transmission grid investments.	Possibilities of new SW implementation. Customized solutions to existing system. Control system upgrade.
	TSOs, customers	TSOs, Customers	TSOs, DSOs, Customers

Spain

ADOSA

Analyzis Sizing and Optimization of Energy Storage Systems

ADOSA

Development of a software tool for analyzing and sizing from a techno-economic perspective energy storage systems jointly operated with renewable energy generators

Years	Project total cost	Website	Coordinator's country	Coordinator
Ended in 2017	0.3 M€	N.A.	Spain	Acciona Energia & Tecnalia

Types of technologies and services tackled

Types of technologies and services tackled

Types of technologies and services tackled

Fartners

Countries involved

N.A.

1

KER

Software tool

Capacity of systematically analyzing and sizing energy storage systems and applications.

Reducing technical and financial risk from early stages.

The user and the final customer.

The use

ALISIOS

Almacenamiento para la integración de renovables en sistemas aislados

ALISIOS

Evaluation of storage capabilities to provide system services in the context of isolated electrical systems with large RES penetration

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2021	10 M€	N.A.	Spain	REE

Types of technologies and services tackled Partners Countries involved

N.A. 1

Tool for system frequency **KER** Tool to cope with RES variability enhancement Tool to keep system frequency within Mitigation of the effect of short-term variations of RES generation security margins Increase of RES penetration at isolated Enhancement of power quality in term power systems, system-wide thus of frequency stability; better quality of supply contributing to less pollution, and cheaper electrical system All users of the power system All users of the power system

AMCOS

AMCOS

Advanced Modular COmpensator System

Design of a new cost-effective modular converter to act both as a Static Synchronous Compensator (STATCOM) and an Energy Storage System (ESS). The modular approach of this development permits to combine different types of energy storage devices, as some modules may comprise supercapacitors while others comprise batteries

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	2.6 M€	http://www.ree.es/en/r ed21/rdi/rdi- projects/amcos	Spain	REE

Types of technologies and services tackled

Partners

Countries involved

STORAGE & POWER-TO-X

N.A.

1

KER

Modular converter (Prototype of control)

Control of Modular Multilevel Converter (MMC) modules: the independence offered allows to differentiate between active and reactive power flows

Storage devices can be easily implemented. Improvement of communications and response time. Good control with excellent power grid quality. Reduction of losses and flow control

User

CECOVEL

CECOVEL

Control Center for Electric Vehicle

Robust and reliable SCADA that allows the visualization and management of the demand generated by electric vehicle charging points

Years Project total cost		Website	Coordinator's country	Coordinator
2014-2016	0.6 M€	N.A.	Spain	REE

Types of technologies and services tackled

Partners N.A.

Countries involved

GRID

Guidelines for EV Demand management

KER

Safe integration of electric vehicle demand into the electricity system and intelligent charging management

Spread the use of EVs. System allowing the charge of electric batteries at any time in an efficient way. Efficiency and sustainability. Technological innovation.

System operators

HVDC LINK

HVDC LINK

HVDC links for marine energy evacuation: future solutions

Investigation on HVDC technologies aiming at reducing the cost and complexity of the current HVDC existing architectures to connect offshore wind farms to the main grid

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2017	1.3 M€	N.A.	Spain	TECNALIA

Types of technologies and services tackled **Partners Countries involved Hybrid HVDC transmission** High-level control of VSC-Current and voltage **KER** measurement in HVDC systems architecture **HVDC** converter stations New HVDC hybrid system Analysis of the interaction Two sensors, one optical for optimized for the transmission of between VSC-HVDC converters current and one R-C divider for energy generated in offshore and the AC system, for different voltage, to provide digital generation plants. phenomena related to power measurements for HVDC lines. quality, voltage and frequency control. Specific solutions and accuracy of Lower complexity than offshore Knowledge acquired in this field substations based on MMC of analysis (today lack of the measurement. converters. Lower size and knowledge).

Higher efficiency and reliability. Lower cost. Consumer.

weight of the offshore substation.

User.

Customer.

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

IDEAS

Interoperabilidad de Equipos de Automatización de Subestaciones

Development and demonstration of a complete solution for a HV / MV substation incorporating IEC 61850 into its Integrated Control and Protection System, covering all the lines associated with a new automation system

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	0.8 M€	https://www.fcirce.es/web/data/project.aspx ?source=capacitynew&id=77955&idc=21&s ourcec=areaoffelec	Spain	ENDESA

Types	of technologies and service	Partners	Countries involved	
	GRID		5	1
KER	Control and protection system for an electrical substation according to IEC 61850	Increase of functional and communications capacities of electrical substations	and viable	Enhancement of interoperability between control and protection equipment of electrical substations
•	To transform inefficient connections by adopting a TCP / IP model (the one that supports the definitions of IEC 61850 protocols).	Adaptation of the substations to the new (smart) grid model topologies.	To prevent subsequent technological developments from being subject to the implementation of a particular supplier.	To follow the international guidelines for the design of interoperable Smart Grid systems [thus guaranteeing a more optimized management of the network.
1	To make the substation a new agent, ready to interact with others and assume a new role in future services of the electricity market.	Incorporation of additional functionalities into an updated communications network.	Costs reduction.	Enhancement of interoperability, reduction of costs, increase of competitiveness.
	DSO, TSO.	DSO, TSO.	DSO, TSO.	Final user, DSO, TSO.

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

LIFE FACTORY MICROGRID

Electric vehicles to grid, renewable generation and Zn-Br flow battery to storage in industry

Demonstration, through the implementation of a full-scale industrial smartgrid, that microgrids can become one of the most suitable solutions for energy generation and management in factories that want to minimize their environmental impact

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	1.9 M€	http://www.factorymicrog	Spain	Jofemar Corporation

Types of technologies and services tackled

Partners

Countries involved

STORAGE & POWER-TO-X POWER GENERATION 3

1

KER

New environmentally friendly business model

Implementation of a smart industrial microgrid at real size and demonstration that the microgrids can be a solution for the generation and energetics management of factories willing to minimize their environmental impact.

Reduction of GHG emissions, increase of self comsuption up to 100% depending of smartgrid characteristics Electric dependence, reduction of black outs and energy transmision costs.

Customers.

LIFE ZAESS

Zinc Air Energy storage system

Demonstration of a low cost and environmentally friendly Zinc-Air Flow Battery Energy Storage System for renewable energy integration

Years Project total cost Websi		Website	Coordinator's country	Coordinator
2014-2017	1.2 M€	http://www.zaess.eu/	Spain	Tecnicas reunidas

Types of technologies and services tackled

Partners

2

Countries involved

1

STORAGE 8 POWER-TO->

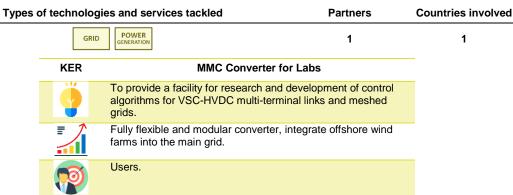
Zinc-Air flow battery

KER

To address the needs of intermittent renewable energy

Increased rechargeability and life span; less energy lost in the storage process; increased total system capacity, making it suitable for grid-scale renewable energy storage; and reduced production costs, because inexpensive and abundant materials are used

Researcher in the same field, DSOs, TSOs


MMC

MMC

Modular Multilevel Converter

Design and development of a small scale Modular Multilevel Converter and the necessary electronic boards to interface with a Hardware-in-the-Loop (HIL) system. The final goal is to get a fully flexible and modular converter to test different control algorithms, in order to validate multiterminal HVDC architectures that are being designed to integrate offshore wind farms into the main grid

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2016	0.7 M€	N.A.	Spain	TECNALIA

NOISEEK

Development of a platform (device + web application) designed to detect the electrical phase and the meter from wich a noise arrives, disturbing the PLC communications in an electrical network

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2018	0.1 M€	N.A.	Spain	Tecnalia

Types of ted	chnologies and services tackled	Partners	Countries inve
со	NSUMERS GRID MARKET	N.A.	1
KER	NOISEEK device (Hardware) NOISEEK web ap	oplication
	Saving time in PLC roll-outs and improvement the successful rate in PLC communication is extended to affect up to 2% of the meters).	ations aggregated way,help	oing
	Improvement of the management of the communications.	ne 2% meters impacted by proble	ems in PLC
	Utilities and their customers.	Utilities and their cus	stomers.

REDACTIVA

Innovación en la automatización de la red de distribución de neutro aislado

REDACTIVA

Development of new solutions and innovative equipment that enable a higher degree of automation in the medium & low voltage distribution networks in order to improve grid operation

http://www.unionfenosadistribucion.com/en/	Years	Project total cost	Website	Coordinator's country	Coordinator
Spanish/1297303835189/redactiva.html	2016-2018	3.5 M€	smart+grids/research+and+development/	Spain	UNION FENOSA DISTRIBUCION SA

•	Types of technologies and s	services tackled	Partners	Countries involved
	GRID	т	7	1
KER	Applications to avoid undesired "isle" generation	Solutions to avoid or reduce ferro-resonance appearance in MV grids	Voltage / intensity sensors	Early detection of faults for predictive / preventive maintenance
Ÿ	Development and implementation of several algorithms, not only to protect the grid from accidental anti-isle events but also to research about grid response by implementing anti-isle events intentionally.	Development of electronic equipment based on an electronic power converter that behaves like a resistance emulator with ability to detect the occurrence of ferroresonance phenomena in inductive voltage measurement transformers.	Sensors integrated in the switchgear that allow the measurement of voltage in bars and cables in the same transformation center.	Capacitive sensors integrated in the MV electrical switchgear to capture signals of the partial discharges and the reference of the voltage wave.
	Improvement of the efficiency of automatisms to grid re-connection and reduction of risks for the power generator equipment, increasing the rate of success of remote control operations.	Mitigation and prevention of overvoltages and unwanted behavior in the protections, thus improving network operation	Improvement of transformation centers operations, possibility to develop complex synchronization check algorithms on both sides of the switch.	Ability to perform an early analysis of the quality of the installation without need of complex installations and power supply cuts and allowing a continuous monitoring over time of the entire system.
(P)	DSOs.	DSOs.	DSOs.	DSOs.

RENOVAGAS

Proceso para la generación de gas natural renovable

Development of a 15-kW synthetic natural gas production plant: hydrogen will be produced in an electrolyser and then it will be introduced in a methanation reactor with a biogas stream for the production of synthetic natural gas

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	2.2 M€	http://www.cnh2.es/investigacion/provectos-finalizados/renovagas/	Spain	CNH2

Types of technologies and services tackled

Partners

Countries involved

STORAGE & POWER-TO-X

7

1

KER

New Catalyst for Methanation

Supporting the development of Power-to-Gas and reducing costs by looking at the effects of admixtures of H_2 and Natural Gas in the gas grid

Integration of more renewable generation in the market thanks to a large-scale storage option, and decarbonisation of the gas and heating systems

Electricity and Gas utilities through the integration and greening of their repsective grids and society as the development is a climate intiative

OSIRIS

Optimización de la supervisión Inteligente de la Red de Distribución

Guarantee of the correct operation of the remote management infrastructure from the point of view of communications, allowing to assess the status of the electrical infrastructure given that it has opted for a communication technology that overlaps the electrical infrastructure, so that they are interrelated

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2016	10 M€	http://www.proyecto- osiris.com/	Spain	Ministry of Industry of Spain

Types of technologies and services tackled Partners Countries involved

CONSUMERS

7

1

KER

LV PLC diagnosis

To identify the communications problems in the LV grid to define an algorithm capable of identifying the smart meter generating noise and the other meters involved

Better smart meter management

Customers and DSO

SECUREGRID

New Cybersecurity Technologies and Data Analytics for Electric Substations

Types of technologies and services tackled

Countries involved

Development of new knowledge in the field of cybersecurity applied to Intelligent Electronic Devices (IEDs) and substations, definition of the degree of security that an IED can achieve for each of the security requirements

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	4 M€	http://www.clusterenergia. com /securegrid	Spain	ZIV

Partners

GRID 7 Electronic Devices with a higher degree of KER **SecureGrid Security Model** cybersecurity Provision of clear infomation about what Reduction of the risk that the electronic equipment (IED) and, by extension, the electrical installations in which they security capabilities in electronic devices could be required by utilities. are deployed suffer a cyberattack. Check cyber-attacks and get data. Increase of the security level of electrical networks, and reduction of the risk of cyberattacks. DSOs. Equipment manufacturers.

STORE

Storage Technologies in Canary Islands

STORE

Installation and testing of different storage technologies in Canary island

Years	Project total cost	Website	Coordinator's country	Coordinator
2009-2013	7.9 M€	N.A.	Spain	ENDESA GENERACION

Types of technologies and services tackled Partners Countries involved

GRID STORAGE & POWER MARKET N.A. 1

KER Improvement primary regulation in islands
Improve primary regulation behavior of islands,

Improve primary regulation behavior of islands, avoiding load shedding events

Dramatic reduction in load shedding events in islands

Electrical island system and customers

Partners

Sweden

CLOUDGRID

Transnational Cloud for Interconnection of Demonstration Facilities for Smart Grid Lab Research & Development

Types of technologies and services tackled

Countries involved

DSOs, TSOs.

technology providers.

Assessement of some of the challenges of the future European power grid from the perspective of i) Grid System Stability, ii) Ancillary Services and Energy Management System and iii) Converter interoperability

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	2.3 M€	www.eranet-cloudgrid.eu@se.se	Sweden	ABB

	CONSUMERS GRID STORAGE POWER-TO	E & POWER GENERATION MARKET	N.A.	4
KER	Simulation of the impact of RES on the stability of dynamic power systems	Ancillary Service Benefit and Risk Analysis (ASBRA)	Emulation of HVDC Cables using Hardware in the Loop technique	Demand control tool for building
	To analyse the future situation in Switzerland and Europe after integration of large amounts of RES and nuclear decommissioning. To develop new protocols and standars on how to manage the development of electric power systems in the presence of massive amounts in RES integration.	A method to evalute the benefits and risk associated with providing ancillary services, linking technology to economics.	Methodology for the design and the laboratory implementation of a HVDC cable emulator with a Power Hardware in the Loop approach.	Set of solutions (methodology, software and hardware) focusing to demand side management platform elaboration for optimal energy management strategies, topicality of smart metering & control including deployment of the price responsive demand.
	Since the results are disseminated also in the international reseach community, they can be interpolated and adjusted to solve similar problems of other places with similar objectives.	Decrease the cost for grid operation, avoid or delay grid investment. Cheaper power system and less impact on the environment. Lower prices, higher awareness of the power system. Power system more efficient, optimized market participation for the provider.	The proposed methodology eases the emulation exploiting the flexibility of Harware in the Loop systems and avoiding the need to use many km of real cables for preliminary testing.	New business models for aggregators. More efficiently use and save earth resources. Opportunity for implementation more challenging and complicated mathematical solutions based on artificial intelligentce achievements.
	TSOs, governments, research community.	User, customer, producer, grid owner, society.	Research centers, universities, certification laboratories and	Final consumer, and the whole power system participans: Aggregators,

LVM

LVM

Low Voltage Monitoring

Monitoring of low voltage network to increase security and reliability in the networks and to decrease SAIDI, SAIFI and CAIDI

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2017	N.A.	N.A.	Sweden	Vattenfall Eldistribution

Types of technologies and services tackled

Partners

Countries involved

GRID

3

KER

Digitization of processes and proactive dialogue with customers

Development of a new functionality that digitizes processes and enables proactive dialogue with the customer, therefore opening the possibility to monitor power quality

Increase of network reliability (decrease of SAIDI / CAIDI / SAIFI) and of power quality. Decrease of the need for ocular troubleshooting of faults in LV grid and for patrols along overhead lines in large geographical areas. Decrease of network losses.

DSOs

SMART GRID GOTLAND

SMART GRID GOTLAND

Increase of the capacity of renewables, improvement of power quality and reliability and creation of customer opportunities to participate in demand side management

Years	Project total cost	Website	Coordinator's country	Coordinator
2012-2017	13.8 M€	http://www.smartgridgotland.se/	Sweden	Swedish Energy

Types of technologies and services tackled	Partners	Countries involved
CONSUMERS GRID STORAGE & POWER GENERATION MARKET	7	2

	CONSUMERS GRID STORAGE & POWER GENERATION MARKET		7	2
KER	Smart Customer Gotland	Just curtailment of wind power during grid disturbances	Smart Meters	Grid automation
•	Analysis of consumer behaviour, technological possibilities of multi-utility smart metering, possible business models for Smart metering system and data security&protection aspects.	Algorithm to minimize wind production curtailments during disturbances and grid faults.	Set of functions originally developed for operation and maintenance of the metering system, to build up an operational surveillance of the LV grid and to provide outage information to customers.	Provision of information from various devices in the grid, about faults and load flows, to foster reconnection process.
<u></u>	Limitation of effects of power shortages and grid bottlenecks, decrease of energy bills.	Automated process which could lower technical safety margins and avoid losses of up to 4GWh per year.	Shorter outages, more satisfied customers, cheaper restoration.	Cost efficient alternative to conventional grid reinforcements.
P	Consumers and grid operators.	Wind power producers.	Consumers and grid operators.	Grid operators and consumers.

Switzerland

3D DSS

3D DSS

3D Decision Support System for power line planning

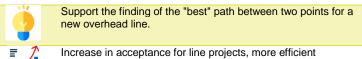
Development of a 3D Decision Support System that supports finding the "best" path between two points for a new overhead line. Social, environmental and economical aspects are considered

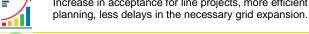
Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	N.A.	https://netzausbau.ethz.ch/	Switzerland	ETH Zurich

Types of technologies and services tackled

GRID

Tool to increase efficiency in line planning and increase acceptance for grid projects


FIN A. Interstrict Switzerland


ETH Zurich

Countries involved

4

2

HYBRID HVAC / HVDC OVERHEAD LINES IN SWITZERLAND

HYBRID HVAC HVDC

Examining major issues along the value chain of hybrid AC/DC overhead transmission in Switzerland: technical aspects of hybrid AC/DC transmission, power system integration aspects, economic aspects and social issues

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2018	0.9 M€	http://www.nfp70.ch/en/project s/electricity-supply/hybrid- overhead-power-lines	Switzerland	ETH Zurich

Types of technologies and services tackled Partners Countries involved

KER Facilitate the realisation of hybrid AC/DC overhead lines in Switzerland

Increasing the transfer capacity without the need for new transmission corridors.

Capacity increases on certain transmission sections at a higher public acceptance.

Society

PLAN. INNOVATE. ENGAGE.

NEXUS

Nexus Energy System Modelling Platform

NEXUS

Development and integration of a modeling platform that enables the study of complex and interdisciplinary questions about the impact of technical, socio-economic, and political decisions on the performance of the future energy system

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	1.3 M€	http://www.esc.ethz.ch/research/research-projects/Nexus.html	Switzerland	ETH Energy Science Center

		TI/Tesearch-projects/Tvexus.t	iuiii		Center
Types o	of technolo	gies and services tackled	Partners	Countri	es involved
CONSUMER	GRID	STORAGE & POWER POWER-TO-X GENERATION MARKET	8		1
_	KER	Methodology for the analysis centralized and small-sca	of the mutual influences of l le decentralized flexibility pro	•	
	Ÿ	To understand where system fle	exibility should be procured opt	imally.	
	<u> </u>	Better utilization of decentralize Ability to securely integrate mor business models and revenue s	e renewable energy systems. I	•	
		End-users.			

United Kingdom

HYBRIDISED LAES

Liquid Air Energy Storage with Enhanced Frequency Reponse Capabilities Demonstration Plant

HYBRIDISED LAES

Demonstration of deployment and trials of a high power high energy Liquid Air Energy Storage (LAES) system connected to the distribution network for the provision of frequency and reserve services and peaking power, and hybrised with load banks, super-capacitors and flywheels enabling sub second response frequency regulation services

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2019	10.8 M€	N.A.	United Kingdom	Highview Power

Countries involved Types of technologies and services tackled **Partners**

Hybridisation of Liquid Air Energy Storage for the provision of **KER** enhanced ancillary services

To prove the use of resilient energy storage technologies for the provision of enhanced ancillary services.

Use of sustainable energy storage technologies that do not use toxic or rare materials and do not have recycling issues, thus reducing the environmental impact. Reduction of the cost to operate the system and of the cost paid by end consumers.

End user, network operator.

SMARTER NETWORK STORAGE

Types of technologies and services tackled

SMARTER NETWORK STORAGE

Countries involved

Understanding of how energy storage could be used to defer traditional network reinforcement. Evaluation of additional benefits that can be stacked to maximise the value that storage delivers, making it a more cost-effective alternative

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2016	21 M€	http://innovation.ukpowernetworks.co.uk/ innovation/en/Projects/tier-2-projects/ Smarter-Network-Storage-(SNS)/	UK	UK Power Networks

Partners

	GRID STORAGE & POWER-TO-X MARKET	4	1
KER	Techno-economic demonstration	Business models and the associated business case	Regulatory and legal framework recommendations
Ÿ	Methodology and evaluation of the impact of storage characteristics on security of supply; optimisation of storage for multiple applications and on energy allocation	Identification of multiservice business models for storage integration with a focus on the valuation and remuneration schemes of the system services brought by storage	Potential solutions to legal and regulatory barriers that affect the deployment and utilisation of electricity storage for distribution networks reinforcement deferral
<u> </u>	More sustainable networks, lower overall electricity costs, decrease in CO ₂ emissions	Commercial benefits can be derived from the result as it identifies suitable commercial arrangements that can be replicated in other cases where storage is used for network investment deferral	Benefits will depend on whether the recommendations are implemented and whether barriers to the adoption of storage for network reinforcement deferral can be tackled
100	End users	End Users, DSOs, Energy suppliers	End users, DSOs, Energy suppliers, Storage project developers

WISE-PV

Whole system impacts and socio-economics of wide scale photovoltaic integration

Investigation of drivers and opportunities to facilitate an increase in the role of solar energy in UK energy futures. The proposal also focuses on the role that UK industry could play in providing innovative PV technologies to lead global uptake of solar PV

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2016	N.A.	http://www.energy.manchester.ac.uk/res earch/solar/wise-pv-project/	UK	The University of Manchester

Types of technologies and services tackled

Partners

Countries involved

POWER GENERATION

A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment

Assessment and comparison of 4 future UK grid mix scenarios with increased photovoltaic (PV) installed capacity with respect to a benchmark "Low PV" scenario, from 2016 to 2035

PV Integration in a cost-effective and efficient manner

Users, Market

This publication has been developed in the frame of the INTENSYS4EU project, which supports ETIP SNET activities and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731220

www.etip-snet.eu